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Foreward

As we approach the 21* century, NASA has embarked upon an ambitious plan
known as the Space Science Enterprise whose goals are aimed at answering a number of
fundamental questions. These include the study of the origin of the Universe, the
evolution of galaxies, stars, and solar systems, and the destiny of the Earth in the cosmos.
An unprecedented opportunity in space exploration is now presenting itself. It is a time
when breathtaking discoveries are being made in space about our own solar system and
Universe while similar advances are coming forth in all the sciences and technologies
back on Earth.

To this end, the construction and completion of the International Space Station
(ISS) represents an important next step, and an opportunity to pursue missions of
scientific exploration at the threshold of space, unhampered by the Earth’s atmosphere. It
is there, in low Earth orbit, that measurements of greater precision and longer duration are
feasible which may bring together the disciplines of particle physics, astrophysics, and
cosmology in much the same way that the orbiting Hubble Space Telescope (HST) has
opened new vistas in astronomy.

One such experiment entitled the Advanced Cosmic-ray Composition Experiment
for Space Station (ACCESS) is proposed to measure the very high-energy nuclei in space
(or “cosmic rays™) and their relative abundances, comprising all of the elements in the
periodic table. This large-area instrument will be designed for a four-year exposure in
orbit, with the goal of determining the origin and acceleration mechanism for these
particles at energies far above anything producible by Earth-based accelerators. This
Report summarizes our preliminary study of the accommodations such as power, weight,
and other infrastructure provided for ACCESS by the ISS and the related Space Shuttle
interfaces during launch, deployment, and return.

We are pleased to conclude that ACCESS in its current, preliminary baseline
design can readily be accommodated by the ISS and Shuttle for a wide range of
instrument configurations of varying size and weight - all of which are defined in the
report which follows.
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Executive Summary

In 1994 the first high-energy particle physics experiment for the Space Station,
the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a
joint collaboration with the U.S. Department of Energy (DOE). The AMS program was
chartered to place a magnetic spectrometer in Earth orbit and search for cosmic
antimatter. A natural consequence of this decision was that NASA would begin to
explore cost-effective ways through which the design and implementation of AMS might
benefit other promising payload experiments which were evolving from the Office of
Space Science.

The first such experiment to come forward was ACCESS in 1996. It was
proposed as a new mission concept in space physics to place a cosmic-ray experiment of
weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its
successor when the AMS is returned to Earth. This was to be an extension of NASA's
sub-orbital balloon program, with balloon payloads serving as the precursor flights and
heritage for ACCESS. The balloon programs have always been a cost-effective NASA
resource since the particle physics instrumentation for balloon and space applications are
directly related.

The next step was to expand the process, pooling together expertise from various NASA
centers and universities while opening up definition of the ACCESS science goals to the
international community through the standard practice of peer-review. This process is
still on-going and the Accommodation Study presented here will discuss the baseline
definition of ACCESS as we understand it today. Further detail on the history, scope,
and background of the study is provided in Appendix A.



Introduction to ACCESS

ACCESS science goals
The puzzle of cosmic radiation

The origin and composition of the cosmic rays has continued to be one of the
most important problems in astrophysics since their discovery'” in 1912. Although we
have learned a great deal about the nature of cosmic rays, much remains a mystery. It
was believed for some time by Lemaitre*” as one of the founding fathers of the Big Bang
theory, that the cosmic rays were relics left over from the origin of the Universe.
However, as experiment and observation improved to the present day it is now thought
that these highly-energetic nuclei, stripped of their electrons, are accelerated by the shock
fronts of supernovae or exploding stars. Although this may be the source of energy,
cosmic-ray origin is still unknown. The all-particle flux is illustrated in Figure 1,
representing the collective knowledge we currently have as measured from a number of
sources such as Earth-based, balloon-borne, and a few space-based detectors.
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Figure 1. The all-particle flux of cosmic rays’.



The ACCESS science mission

ACCESS is a new mission mission concept’!' whose science goals are to address
many of the remaining questions about these enigmatic cosmic rays which bathe our
planet Earth. It is envisioned as the next-generation cosmic-ray observatory for
measuring the elemental composition of the cosmic rays to very high energies, while
acquiring valuable information on the individual element abundances throughout the
periodic table. In particular, it is a goal of ACCESS to explore the possibility that
supernova shock fronts (Figure 2) are the acceleration mechanism for the bulk of cosmic
rays with energies in the region of the “knee” in Figure 1.

There are other ACCESS science goals, which can be summarized as follows:

» Test supernova shock acceleration models at energies up to 10" eV.

« Measure energy dependence of secondary to primary elements.

« Distinguish between first ionization potential (FIP) source injection versus
acceleration from dust grains.

« Measure separately elements synthesized by s-process and r-process.

Supernova 1987A Rings

Hubble Space Telescope

Figure 2. Supernova 1987A.



The more abundant nuclei, lighter than iron, will be measured to energies of about
10" eV. ACCESS will be capable of detecting fluxes of ultra-heavy (UH) nuclei more
massive than iron, and will do this with high charge (Z) resolution. This should allow
important new measurements of elements at least to Z=83 (Bismuth). These data will
prove valuable in our understanding of the nucleosynthesis of such elements and their
abundances in the Universe.

The ACCESS mission will consist of a large-area detector (several square meters)
deployed on the ISS for at least four (4) years duration. The result should be a cosmic ray
observatory in low Earth orbit with a collecting power (area x exposure time) of
approximately 10,000 m?-sr-days. From Figure 1, such a collecting power should result
in about 10 measurements in the neighborhood of the cosmic-ray “knee” during this
mission. ACCESS would be launched onboard the Space Shuttle, and attached to the ISS
sometime after final assembly of that orbiting laboratory. Present plans expect this
deployment of ACCESS to occur around the year 2005.

The Baseline ACCESS Instrument

The baseline ACCESS instrument addressed in this study will consist of three
detectors. The first is a Bismuth Germanate (BGO) calorimeter for measuring the energy
spectra of hydrogen and helium, and limited numbers of heavier elements, up to 10" eV.
The second is a transition radiation detector (TRD) capable of measuring the energy
spectra of lithium to iron. The third detector is the charge module (CM) or A
identification module (ZIM) for element identification of ultra-heavies (UH) and the
lighter cosmic rays. Figure 3, depicting the collective instrument, illustrates one of the
four structural options considered in this study as a baseline design for ACCESS
instrument geometry.

Since the Charge Module is located at the top of the ACCESS instrument, it must
be capable of measuring the charge (Z) of all incident particles, from H through U, with
dynamic range > 10°. Overall, the Charge Module is optimized for measurement of UH
nuclei, and the charge measurements for the lighter particles are needed by the TRD and
Calorimeter modules. The Charge Module contains two layers of silicon detectors which
provide excellent charge resolution up to Z>80. The silicon detector near the bottom of
the module provides a redundant charge measurement and identifies particle which
interact. Two layers of scintillating fiber hodoscopes, located on the top and bottom, are
used to determine the incident particle trajectory, and two Cherenkov detectors measure
the particle velocity. For a 1000-day exposure the Charge Module should collect more
than a hundred Pt and Pb events with single-charge resolution.

The TRD module consists of six radiator layers, each of which is followed by a
stack of gas-filled proportional tubes to measure the transition radiation x-ray photons.
Alternate proportional tube layers are oriented at right angles so that the trajectory of the
incident particle can be determined. Scintillators at the top and bottom measure the
charge upon entry and exit from the module. Transition radiation is emitted for a high-
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Figure 3. One of four instrument configurations assumed in the baseline ACCESS study.

energy charged particle passing between two regions of differing indices of refraction.
The photon yield is proportional to 7? and the Lorentz factor (y, gamma) of the particle
and to the number of layers (‘transitions’). The TRD coves a broad energy range up to a
gamma of about 50,000 and should be able to observe Lithium and heavier nuclei.

The Hadron Calorimeter is composed of a one interaction-length target of inert
carbon followed by a fully active, segmented calorimeter constructed from Bismuth
Germanate (BGO) crystals. Scintillator hodoscope planes are interspersed within the
carbon to provide a fast trigger, and a silicon matrix detector above the target provides a
charge measurement for events that may have, or may have not, passed through the
Charge Module. The thickness of the BGO is selected to obtain better than 63% energy
resolution to the highest energies. The target provides an interaction probability for H of
about 50%, so for a 1000-day exposure the collecting power of the calorimeter is about
500 m’-sr-days.

Additional information and detail on the three separate ACCESS detector
systems, the BGO calorimeter, the Charge Module, and the TRD, are provided in
Appendix B, along with a composite representation of the consolidated instrument. The
different structural options are defined in Appendix G.



Science detail

"How do cosmic rays gain their enormous energies?" "What is the source of the material
that goes into the 'cosmic accelerator’ to become high-energy cosmic rays?" How do these high-
energy particles propagate within, and escape from, our galaxy?" Those are some of the
principal science questions that the ACCESS mission is designed to address. The astrophysical
implications are of central importance to the "Structure and Evolution of the Universe" theme in
NASA’s Office of Space Science.

Cosmic rays contain the nuclei of atoms covering all of the periodic table (H....Fe....U) as
well as electrons, x-rays, gamma-rays, anti-protons, positrons, and neutrinos. These are all at
high energy, extending well beyond the energies available in terrestrial accelerators. The cosmic
rays fill our Galaxy, as well as other galaxies, and are an important component in the dynamics
of the Galactic disk. Cosmic-ray electrons are the source of the important radio synchrotron
emission from all galaxies, and cosmic rays are a source of the high-energy photons observed in
gamma-ray experiments. We know quite a bit about the cosmic rays from many decades of
study, yet their exact source and the details of their acceleration to high energy remain a mystery.
ACCESS is designed to tackle this problem by extending current knowledge to the high-energy
and high-Z frontiers.
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Figure 4. Differential energy spectra of H, He, C, and Fe.



One of the keys to unlocking the acceleration question is measurements of the energy
spectra of individual elements. Figure 4 is a compilation of data on the differential energy
spectrum of H, He, C and Fe'*"*. At low energies (< GeV/nucleon) the spectra roll over due to
solar modulation effects. Above ~10 GeV/nucleon the spectra are power laws. To look at still
higher energies, we must utilize the all-particle spectrum (which can be measured with ground-
based air shower arrays). What is found appears to be a "knee" or change in index of the power
law in the vicinity of 10" eV/particle. This is illustrated in Figure 5 where the flux has been
multiplied by E*” in order to flatten or “remove” the power law in the region of the spectral
change'". The steeper spectrum then extends up to near 10'° eV without another change. It is the
energy region beyond the data shown in Figure 4 up to the "knee" region of Figures 1 and 5 that
is the target of the ACCESS energy spectra measurements.

Figure 5 also gives the proton gyroradius in an assumed 3 micro-gauss interstellar magnetic
field, which for the energies being studied, is less than a few parsecs. This implies that the
particles are easily confined in our galaxy. More important is the scale at the bottom which
indicates that these high-energy events have intensities between 1 per m?-sr-day and 1 per m*-sr-
month. That is, they are "rare," requiring large-area detectors and long exposure times for
detailed study.

The current theoretical model that purports to explain the cosmic-ray spectra below the
knee involves particle acceleration in supernovae remnants by the shock waves propagating from
the explosion into the surrounding matter, e.g. the interstellar medium'*'®. This "shock wave
acceleration" is predicted to yield power-law energy spectra, and there is sufficient energy
available in supernovae to replenish the energy in the cosmic rays. The mechanism of shock
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acceleration has been observed to work within the heliosphere, e.g.. at planetary bow shocks, at
interplanetary shocks in the solar wind, and at the solar wind termination shock. It is believed to
be a prevalent process in astro-physical plasmas on all scales throughout the universe. It isa
characteristic of diffusive shock acceleration that the resulting particle energy spectrum is much
the same for a wide range of parameters, or shock properties. This energy spectrum, when
corrected for leakage from the galaxy, is approximately consistent with the observed spectrum of
galactic cosmic rays shown in Figure 4.

This attractive model predicts a cut-off in the power-law spectrum. The shock-accelerated
particles pick up a small increment of energy each time they cross the shock boundary, in a
random-walking (diffusing) process. Thus, the maximum energy accessible in a given situation
depends on the rate at which the particles diffuse back and forth across the shock (i.e., on the
magnetic field) and on how long the acceleration mechanism acts. For a supernova (SN) shock,
the time and distance scales are much longer than the scales encountered in the heliosphere, so
the corresponding energies are much larger. However, the available acceleration time is limited
by the time taken for the blast wave to propagate outward and to weaken to the point that it is no
longer an efficient accelerator. In the most commonly-used form of the theory, the characteristic
energy is about Z x 10" eV, where Z is the particle charge'’. This implies that the cosmic-ray
composition would begin to change beyond about 10" eV, the limiting energy for protons; Fe
would start to steepen at an energy 26 times higher. Thus, we expect the hydrogen spectrum to
fall off first (in total energy), followed by helium and the higher-Z nuclei. As the energy
increases, the fraction of heavy nuclei also increases. This is the characteristic signature of the
supernova remnant shock acceleration process that ACCESS is designed to detect.

Whether the "knee" feature in the all-particle spectrum is related to the
termination of the SN acceleration mechanism is one of the questions that must be solved.
However, the cosmic rays do extend to much higher energies, and this implies that, if the
SN blast wave mechanism "cuts-off" as expected, a new source must be invoked for the
still higher energy particles. One idea is that these could be accelerated by the collective
action of several supernova blast waves. Since all components would come from the
same class of source, both below and through the knee region, then the relative
composition would depend on energy in a prescribed way. Furthermore, since the
acceleration is mediated by the magnetic field, then the spectra of all species should be
the same when compared as a function of magnetic rigidity.

Another view suggests that if the progenitor were a massive star with a strong
wind (like SN 1987A), then the explosion would not be into the general interstellar
medium, but rather into the atmosphere swept out by the wind of the progenitor star. In
this situation, one would expect the acceleration rate to be determined at first by the
magnetic field of the progenitor’s wind, which might be significantly higher than that in
the interstellar medium. Consequently, the acceleration rate could be higher, and the
particles could reach higher energies than are achieved for an explosion into the general
interstellar medium.



Finally, compact objects, especially neutron stars in various environments, have also been
suggested as a possible new source of accelerators to supply particles above the knee region.
Possibilities include: (1) the spin-down power of rapidly rotating neutron stars to accelerate
particles in pulsar magnetospheres; and (2) the accretion power in binary systems in which
matter from a companion star is falling onto the surface of a compact partner.

Whatever the case, it will be the direct composition measurements at energies approaching
the "knee" which will provide the first clues to this new source of particles.
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Figure 6. Compiled high energy spectra for H and He (left) and CNO, Ne-S, and Fe group
(right).

Figure 6 is a 1993 compilation of high-energy results for the charge ranges, H, He, CNO,
Ne-S and the Fe group by Swordy®. The data are based on a variety of experimental techniques
including passive emulsion chambers, ionization calorimeters, a magnetic spectrometer, a ring-
imaging Cerenkov detector, transition radiation detectors, and Cerenkov counters. Note that the
flux values are multiplied by E*”* and the scale is energy per nucleon. (A horizontal line
corresponds to an E?”* energy spectrum, with smaller power-law indices having a positive
slope.)



A cursory view of Figure 6 indicates that the highest energy data extend up to roughly
10" eV for protons and lower energies for the heavier components. Note the unexpected
behavior, in that the flux of helium relative to protons increases with energy. At low energy.
below ~10? GeV/nucleon, the H and He show about the same slope. Above about 100
GeV/nucleon, however, the H becomes almost flat (i.e. E2" spectrum), while the helium
continues to increase (i.e. about E>% spectrum). This behavior has been interpreted as evidence
for two different types of sources or acceleration mechanisms for Hydrogen and Helium'®.

At the highest energies in Figures 6 (few x 10* GeV/nucleon), the proton spectrum appears
to roll-off or bend, but this occurs at an energy that is a factor of ~2 below the expected cut-off
for SNR shock acceleration. Note that He shows no tendency to change slope, within the limited
statistics, to the highest energies shown. However, one must be careful in interpreting this data
since the statistics for the highest energy points are very small, i.e. a few particles per bin. More
recent data®®, do not show the tendency for the proton spectrum to roll off.

It is clear from Figure 6 that the spectra of the groups of heavier elements are similar to
helium but show a trend towards flatter spectra with increasing energy. Specifically, the spectral
slopes at higher energies seem to be close to values around 2.5 to 2.6, significantly flatter than
the values reported at lower energies by previous space experiments™”'. However, again, the
results are statistically limited and there may be normalization uncertainties between the different
experiments.

The data in Figure 6 are intriguing. They suggest that something may be changing in this
high-energy region around the knee, possibly related to the supernova remnant shock
acceleration process. Clearly, unraveling these questions requires comprehensive new data for
the individual elements, H-Ni, extending to as high an energy as possible.

An equally compelling question for ACCESS is the nature of the material injected into the
cosmic-ray accelerator. Here the important measurement is the relative composition of the
cosmic rays themselves, at all energies. Previous work at low energy (<10 GeV/nucleon) has
determined the relative abundances of each of the elements up to Zn, and of groups of elements
beyond Z=30 to the end of the periodic table. Figure 7, for example, gives a compilation of
results for the Ultra-Heavy (UH), Z>30, region, compared to the relative abundances measured in
the solar system, shown as the histogram'’. These measurements were obtained by two previous
satellite experiments™?. Note that the scale is normalized to a million Iron nuclei,
demonstrating the rarity of these UH cosmic rays and, again, the need for large-area detectors
exposed for long durations in space. The best of these previous measurements were not able to
separate the odd-Z elements from the neighboring even-Z elements over the full charge and
energy range, which limits the conclusions that can be derived from the data. Measurements
with single-charge resolution, spanning the periodic table, are a principal goal for ACCESS.

The UH elements are particularly interesting since they are formed mainly by neutron
capture reactions, unlike the lower-Z elements which are synthesized by charged particle
reactions. From an analysis of the solar system abundance distribution, the neutron capture
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Figure 7. Compiled measurements of nuclei beyond the iron peak.

reactions have occurred in two distinct processes, called the r- (rapid) and s- (slow) processes.
The r-process is characterized by neutron capture rates much faster than the beta decay rates so
that nuclei are driven far from the valley of beta stability. The s-process, however, is a longer-
term exposure since the neutron capture rates are less than the beta decay rates producing
synthesis of elements along the valley of beta stability. The UH cosmic rays of Figure 7 are
evidence for the presence of both s-process and r-process components, but the data are not
precise enough to determine the exact mixture. If the cosmic ray material is indeed solar system
like, we would expect the mix to be similar to the solar system. On the other hand, if there is a
component of freshly synthesized matter among the cosmic rays, €.g. from supernovae, then a
different mixture would be indicated. ACCESS measurements of the individual element
abundances should allow the 1- and s-process contributions to be evaluated at low energy.

It has been known for many years that the cosmic rays arriving at Earth contain both
primary nuclei that originated at the source and secondary nuclei formed enroute by nuclear
interactions of the primary nuclei with atoms in the interstellar medium through which they
propagate. This transformation process has been studied experimentally by means of
measurements of nuclei that are purely secondary, such as Li, Be, B, F, and the sub-Fe elements
(Sc,V), all of which are extremely rare in the universe, but are orders of magnitude more
abundant among the cosmic rays.

Figure 8 shows one such secondary to primary ratio, B/C, as a function of energy”. From
the peak near 1 GeV/nucleon, the ratio decreases both to lower energies, due to the energy
dependence of the cross sections combined with ionization energy loss and solar modulation, and
to higher energies, due to escape from the confinement region. Cosmic ray propagation at
energies above 1 TeV/nucleon is dominated by escape from the galaxy. The mean escape length
decreases with increasing energy up to ~100 GeV/nucleon®, and it has been suggested that the
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Figure 8. The B/C secondary to primary ratio as a function of energy.

flattening of the heavy nuclei spectra in Figure 6 could be explained by a less severe decline in
the escape length above 1 TeV/nucleon, an energy range for which there is currently no reliable
data. ACCESS will be able to extend the measurements of Figure 8 to higher energies to
investigate this energy dependence.

Transport models for cosmic ray propagation in the galaxy have been developed which, in
essence, work backwards from the measured composition, unfold the secondary component and
determine the relative abundances of the elements at the source(s) of the cosmic rays'’. These
models utilize the secondary to primary ratios, such as Figure 8, and incorporate the large body
of nuclear fragmentation cross section data”>. Uncertainties on the derived source abundances
range from 5-20% for the abundant, mostly primary species to factors of two or more for
elements with large secondary contributions’”’. However, these source abundances provide a
means to study the cosmic ray source matter.

A comparison of this cosmic ray source composition to matter in the solar system shows
that there are systematic differences. The source matter is rich in elements like Fe, Ni, Al, Mg
and deficient in H, He, C, O, Ar. This pattern can be organized by the First lonization Potential
(FIP) of the elements, a recent example®® of which is presented in Figure 9. Plotted is the ratio of
the cosmic-ray source abundance to the solar system abundance, normalized to Hydrogen. The
abundances divide into three regions: low-FIP elements are most overabundant; high-FIP
elements are much less overabundant; and a transition region between the two groups. This FIP
dependence does a moderately good job of organizing the abundances, but it is by no means
perfect. (The very low abundance of H, the normalization point, and He stand out.) Deviations,
of course, may be due to remaining uncertainties in the abundance measurements themselves.
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Note particularly the uncertainties for many of the UH elements. ACCESS measurements will
certainly improve these values.
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Figure 9. Galactic cosmic-ray source abundances divided by solar abundances vs FIP.

The FIP pattern in Figure 9, when viewed in a thermal, collisional excitation model,
requires temperatures of about 10,000 °K. This suggests an origin is stellar atmospheres rather
than in the interstellar medium, if ionization is the controlling mechanism. However, this may
not be correct. Although FIP appears to be an organizing parameter, it may not be the
astrophysically important one, i.e. FIP may be an alias for something else. FIP is closely
correlated with volatility or condensation temperature, for example. The low FIP elements tend
to be the least volatile (refractories) and have higher condensation temperatures. This suggests
that the FIP-dependence could be implying that some of the cosmic-ray source matter has been
condensed into dust grains. This would require preferential acceleration of atoms sputtered from
the grains, as has been suggested in a recent model for supernova remnant based cosmic ray
acceleration””. Whether or not the cosmic-ray source matter is in the gaseous state or bound into
grains is a very important question for determining the environment in the acceleration region,
particularly if supernova remnants are involved.
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Distinguishing between the "grain or gas" origin is possible since there are a few elements
which break the FIP-versus-condensation-temperature correlation. These elements, e.g. As, Br,
Rb, In, and Cs are mainly in the UH region of the charge spectrum and are, for the most part, the
rarer, odd-Z elements. With the single-element resolution planned for ACCESS’s Charge
Module, obtaining good measurements of elements such as these will be possible, for the first
time. This should allow ACCESS to address the "grain" hypothesis.

In summary, ACCESS holds the promise of answering some of the long-standing questions
in cosmic-ray astrophysics: the cosmic-ray accelerator, propagation in the galaxy, source
abundances, nucleosynthesis and the importance of interstellar grains. This is already a large
science return. However, it may be possible to utilize ACCESS to measure electrons as well.
The combination of a calorimeter in conjunction with transition radiation detectors has been
employed previously for studying electrons, and such measurements are being investigated as a
secondary science goal. At energies of a TeV (10" eV) and above, electrons cannot propagate
very far in the interstellar magnetic fields, so electrons observed at these energies would come
only from "nearby" sources.

Overall, the new information provided by ACCESS may dramatically change our
understanding of the Galactic cosmic rays.
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ACCESS Mission Plan: Baseline

As originally conceived, ACCESS was intended to be an ISS payload which
would replace the Alpha Magnetic Spectrometer’® (AMS) when the latter is retrieved and
brought back to Earth following a three-year stay. Under this scenario, ACCESS would
in fact occupy the same ISS attached payload site as AMS. However, as the ACCESS
conceptual design has matured the consensus of opinion is that ACCESS must be
prepared to occupy ISS attached payload sites on either side (port or starboard) in order to
maintain program schedules, should the AMS experiment stay longer than expected on-
orbit. ACCESS is being planned for a four-year stay.

Figure 10 depicts the current ISS conceptual configuration with ACCESS
attached at payload Site S3 UI (S for starboard, U for upper, and I for inboard). Should
both ACCESS and AMS be resident on ISS at the same time, ACCESS will then be
assumed to take its position temporarily on the port side of the Space Station at Site P3
UI (P for port).

Figure 10. Currently planned ISS configuration with ACCESS attached at Site S3.
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ISS Resources and Constraints

General

Upon its completion, the ISS will be the largest orbiting laboratory in low Earth
orbit (LEO) ever constructed. This build-up process (Appendix C), already begun with
the successful launch of the first element Zarya on November 20, 1998, will take
approximately five or six years until completion around April 2004 with the attachment
of the U.S. habitation module after some 43 assembly flights.

v
I
E

Figure 11. One possible configuration of ACCESS on the S3 Truss Site.

The ISS structure will be a very large-scale science and engineering outpost in
LEO at the threshold of space, which will provide experiments such as ACCESS an
impressive view of the astrophysical Universe, illustrated in Figure 11. The scale of the
ISS is indicated by the following statistics.

» Mass 1,040,000 pounds » Power 110 kilowatts

* Length 356.4 feet * Altitude 220 n. mi. (mean)
» Width 290 feet * Crew Up to seven

* Height 131 feet * Orbits/day 18
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Basic Resource Provisions

Having been launched by the Space Shuttie, ACCESS will be deployed
robotically and attached to the Payload Attach System (PAS) which is located on the
integrated truss segment (ITS) of the ISS. It is the PAS which provides the essential
hardware and functional requirements interface, giving the ‘life blood” resources
available from the ISS to the payload. These are hardware structural support, power, and
data interfaces. ISS provisions and accommodations combine to establish a stable
orbiting platform with altitude and attitude control for ACCESS, depicted within its
support carrier as a payload in Figure 11 above.

The payload integration hardware at the PAS is further illustrated in Figure 12,
showing the capture latch assembly, the V-guides, and Umbilical Mechanism Assembly
(UMA). The UMA is the critical device which provides electrical power as well as
telemetry data and command interfaces for ISS payloads, consisting of an active portion
on the PAS itself which connects with a passive portion on the payload’s carrier.

V-GUIDE

PLATFORM

CAPTURE LATCH
ASSEMBLY

UMBIL ICAL
MECHAN [SM
ASSEMBLY Y
{ACTIVE HALF)

DEPLOYABLE
SUPPORT

Figure 12a. ISS Payload Attach System (VPAS) integration hardware.
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S3/P3 Truss Attach Sites

The ISS truss attach site accommodations at the PAS UMA interface (Figure 12)

are given in Table 1.

Table 1. Summary of Site S3/P3 Payload Accommodations.

« Power

» Mass
* Volume
» Low-rate Data

* High-rate Data

» Thermal control

« SSP 57003

« SSP 52000-PAH-TAP
« SSP 52000-IRD-TAP
+ SSP 52000-PAH-LSP

113 Vdc (effective) at 3 kW to each site

80% duty cycle at 1 kW, 100 W keep-alive

See the “Carrier issues” section of this report.
2.6m x 4.3m x Height

MIL-STD-1553B (command, control, & telemetry)
<1 Mbps, 2 twisted shielded-wire pairs P/L MDM
43 Mbps via fiber optic link to Ku-band data link
Passive

Controlling document

Controlling document

Controlling document

Controlling document

UMA
active half

UMA
passive half

Figure 12b. Detail of the UMA in Figure 12a.

A functional block diagram of the PAS and UMA interfaces is provided in

Appendix H.3.
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ISS Environments

The pertinent ISS operational characteristics which influence the ACCESS
mission are summarized below, with controlling documents defined in Appendix D.

Orbit and Ephemeris
* Inclination 51.6 degree, near circular
 Geocentric altitude 350-460 km (190-248 n.mi.), periodic re-boosts
» Perturbations Gravitational, atmospheric drag, solar cycle
« Limitation, constraint Soyuz de-orbit (maximum altitude of 470-480 km)

Space Radiation Environment

« ISS design altitude 500 km (SSPO and Boeing-Prime requirement)

« Trapped radiation belts Protons and electrons, requiring ~250 mils shielding

» Auroral zone Protons and electrons, higher concentration

« South Atlantic Anomaly  Protons and electrons, higher concentration

* Solar flares Low- and high-energy nuclei; heavy ions

* Galactic cosmic rays Low- and high-energy nuclei; heavy ions

* Risk mitigation Shielding (low-energy flux); multi-path redundancy
and ops work-around, power off (high-energy flux)

» SSP 30512 Controlling document

Micrometeoroid and Debris Environment

» SSP 30425, Rev. B Controlling document
« Whipple shields Present method of risk mitigation

Induced Plasma Environment
« ISS floating potential Controlled by plasma contactors (£ 40 volts)
External Contamination Constraints

» Molecular contamination  Quiescent 1x10™ g/cm’ s (~ 30 angstroms/year)
. = « Nonquiescent 1x10° g/cm’ s (~100 angstroms/year)
» Molecular column density 1x10"* molecules/cm’

» Particulate background One 100 micron particle per 10” steradian per orbit

Electromagnetic Radiation Environment

« RF emissions Radiated susceptibility field limits (volts/meter), all
» SSP 41000 Controlling document
» SSP 57003 Controlling document
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Basic ACCESS constraints

It is already known that there will be periods of reduced payload accommodation
for ACCESS. This includes a “keep-alive” condition (with minimal power
accommodation) during STS launch, rendezvous, docking., and deployment to the
attached payload site. Also, an overall ISS duty cycle of 75-80% has been estimated for
such attached payloads. The actual duty cycle is unknown at the present time, because it
is a function of how many payloads will be present on the ISS. It could be as much as
500 W and as little as 100 W. The “golden rule” is to design the keep-alive dependence
to be as small as possible. The power accommodation for keep-alive will be written into
the Program Initiation Agreement (PIA).

The current baseline mission plan for ACCESS has been to remain unpowered
during launch to the ISS, although there has been discussion of a powered keep-alive
requirement prior to PAS and UMA activation in order to stabilize the temperature of the
pressurized gas supply in the TRD instrument throughout the mission. NASA may also
consider performing a post-launch payload functional test prior to unberthing from the
Shuttle payload bay. Such power is available as an STS accommodation if it becomes
necessary, although the situation is made somewhat awkward by three fundamental
differences which currently exist between the Space Shuttle and ISS:

+ STS power is 28 VDC while ISS PAS power is 120 VDC.

« STS high rate data travels via copper wire while the ISS uses fiber optics.

« STS low rate data and command is via the PSP and PDI, while ISS uses a 1553
data bus.

See Appendix H for further discussion of STS power and data accommodations.

Following a four-year mission lifetime, ACCESS is to be removed from the attach
site, and returned to the Earth. At the end of its mission, the science payload will be
returned to the instrument provider. A final post-flight calibration verification is under

consideration.

A detailed discussion of all ISS environments in the space segment (LEO) which
constrain its payloads is given in Appendix G.
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ACCESS Accommodation on STS

Carrier issues
Summary

The carrier is the mechanical support structure which contains the ACCESS
instrument, as shown in Figure 11. The carrier combined with the science instrument
constitutes the total ACCESS payload. It must be suitable for both the ACCESS launch
vehicle (Space Shuttle, STS) and the ISS PAS. It must also obviously have the structural
and mechanical properties to withstand the stress and vibration loads of launch, on-orbit
operations, descent, and landing. However, as with any aircraft or spacecraft cargo it
must comply with certain center-of-gravity (CG) envelopes and volume constraints
(Appendix F). This is the familiar “weight-and-balance” problem known to pilots
everywhere which precludes a loss of dynamic vehicle control.

These Shuttle/ISS mass-property constraints are summarized in Table 2.
Table 2. Critical Mass Properties Constraints.

» Upmass limitations

« Maximum allowable PAS payload mass

* CG constraints

* Volume constraints

« The payload CG should be high in the Shuttle bay, and low on the ISS PAS.

The first four conditions drive the ISS weight limit. The “upmass” is the
negotiated mass allocable to a U.S. payload on the subject Utility Flight (UF) in the ISS
assembly sequence (Appendix C) or thereafter. The fifth drives the payload CG to fall
along or near the trunnion sill-level in the Shuttle cargo bay.

That last constraint derives from the fact that by design the dynamic load
performance for the Space Shuttle (launch, re-entry, and landing) is not equivalent to that
for the ISS (quiescent and on-orbit re-boost). It is a restraint which was resolved at the
outset’ by the JSC ACCESS Accommodation Study team: Simply turn the ACCESS
instrument sideways when in the Shuttle bay. Because most of the mass of the baseline
ACCESS instrument resides in the calorimeter it easily passes the ISS constraint since it
is at the “bottom” of the carrier in Figure 11 and is pressed up against the PAS.

The second category of payload carrier issues involves the frequency response of
its structural design and the materials used. These constraints are summarized in Table 3.
All ISS and STS payloads must go through a number of safety reviews, Phase-zero
through Phase-III (see Safety on ISS, Table 20 below). Depending upon the flight
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readiness of their structural design and the materials chosen, a payload can pass or fail
these reviews.

Table 3. Critical Shuttle Load and Materials Constraints.

« All Shuttle payloads are required to perform static testing (per NSTS-14046).

o All Shuttle payloads are required to perform a modal test and correlate their
Finite Element Model (FEM) for all modes below 50 H:z
(per NSTS-14046).

o All Shuttle payload structure must be comprised of material complying with
properties from Military Handbook 5G, or undergo independent safety
reviews.

« All fasteners must comply with the JSC fastener integrity program (JSC 73642).

The material usage in Item 3 of Table 3 must be verified in accordance with applicable
requirements in the appropriate controlling documentation (Payload Specific ICD, NSTS-
14046, NSTS-1700.7B, or SSP-50021 for SSP cargo elements).

Shuttle bay geometry

It has been assumed in this Accommodation Study that the trunnion spacing in the
Shuttle payload bay must be identical to the USS carrier (addressed in detail below under
ISS carrier options). This is not a firm requirement, but the baseline ACCESS mission
plan previously discussed (Figure 10) was meant to cover the launch and retrieval
scenario in which ACCESS would be swapped out for the first major ISS particle physics
payload, the AMS. This assumption requires that the geometry of the AMS and
ACCESS have identical trunnion hardware interfaces in the Shuttle cargo bay.

It is possible to change the Shuttle attach points for any new carrier, however.
The AMS’s USS has five trunnions that attach to the Shuttle payload bay. The two
primary trunnions (which carry Shuttle X and Z loads) are located towards the back of the
payload bay. The two secondary trunnions (which carry Shuttle Z loads) are 70.8 inches
forward of the primary trunnions. The keel trunnion (which carries Shuttle Y loads) is
centered between the four longeron trunnions. Clearly, if ACCESS utilizes the USS
(Figure 13 below), then this assumption would not be an issue. If ACCESS uses a new
carrier structure, the trunnion spacing and orientation is still fixed by the design of the
USS per this baseline mission plan assumption.

STS robotic interface

The robotic interfaces to the Shuttle are described in NSTS-21000-IDD-ISS,
Sections 13 and 14. This document also deals with a variety of different issues related to
the Remotely Operable Electrical Umbilical (ROEU) and the Shuttle and Station grapple
fixtures which are the direct hardware STS-to-payload interface for robotic cargo
logistics, transfer, and handover to the ISS, as well as retrieval, descent, and landing.
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STS power and command & data handling (C&DH) interface

The STS power, command, and data handling (C&DH) accommodation is unique
and different from the ISS.

The ROEU is an umbilical connector that provides capability for transferring STS
power (28 VDC) to the payload. It also accommodates a 1553 data bus, and a copper-
wire high rate interface while the payload is still in the payload bay of the Shuttle. This is
one form of “keep-alive” power. Currently the Shuttle has two different types of grapple
fixtures, the Flight Releasable Grapple Fixture (FRGF) and the Electrical Flight
Releasable Grapple Fixture (EFGF, also 28 VDC). The EFGF utilizes a movable grapple
shaft to extend and retract an electrical connector to the payload.

As discussed previously under “Basic ACCESS Constraints,” 120 VDC power is
not provided in the Shuttle payload bay unless it is outfitted with an Assembly Power
Converter Unit (APCU) for converting the STS 28 VDC power to 120 VDC. Similarly
for the data, there is a data incompatibility at this interface. The Shuttle bay must be
outfitted with a Data Conversion Unit (DCU) in order to convert payload high rate fiber
optic data to the STS copper-wire interface in order to bootstrap it into the Ku-band
downlink or to record it in the shirt-sleeve environment of the crew cabin. The Shuttle,
furthermore, must be outfitted with an Orbiter Interface Unit (OIU) in order to get the
1553 low rate command and data into the Orbiter S-band uplink and downlink.

Therefore, under existing STS design the Shuttle Orbiter must be equipped with
an APCU, an ROEU, a DCU, and an OIU in order to power up the ACCESS payload
while still in the Shuttle payload bay and transmit any of its high rate science data
downlink, say as a functional test before deployment to the ISS, unless it operates off of
28 VDC and 120 VDC. If, on the other hand, ACCESS were only concerned with a
keep-alive thermal control capability (e.g., heaters) along with a low rate housekeeping S-
band downlink, the APCU could be eliminated if the payload heater system could operate
off of the 28 VDC provided by the ROEU.

See Appendix H for further discussion of STS power and data interfaces.
STS hardware interfaces

The subject of STS hardware interfaces is discussed in the Carrier analysis section
of this Report and in Appendix H.

23



ACCESS Accommodation on ISS

Experiment Carrier Structures (ECSs)
Summary

The initial task of this feasibility study was to determine if the ACCESS
experiment could utilize the existing design of the Unique Support Structure (USS,
Figure 13) prepared, developed, and flown by the Johnson Space Center on a precursor
flight for the first high-energy particle physics experiment (AMS) destined for ISS. As
the science definition of ACCESS progressed through the study, however, it became
obvious that several carrier options were available. These are defined in detail in
Appendix E. This report will focus upon two of these. The first is the original USS
design, because it was the going-in concept. The second is a totally new design called an
ECS, described below.

* We recommend the ECS.
* Comparison of the USS with ECS is given in Tables 4 and 5.

* JSC carrier deliverables are given in Table 6.

USS.

This study has demonstrated that with modifications to the USS, the ACCESS
experiment can be accommodated by the USS*. However, in order for the ACCESS
payload to fit within the existing USS design, size, and weight, certain limitations must
be placed on the ACCESS experiment. Recent developments with the Payload Attach
System (PAS) on the S3 segment of the ISS will increase the overall cost to the ACCESS

Figure 13. Unique Support Structure (USS)
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payload under the USS option. Since it was developed for another experiment. adapting
the USS to ACCESS is less mass-efficient than a carrier designed specifically for
ACCESS.

ECS.

A new Experiment Carrier Structure (ECS) design was therefore investigated,
several versions of which are presented. One ECS (Option 3) was chosen as the best
potential candidate for the ACCESS support structure, but all are viable. The design
goals for the ECS were to minimize the overall weight of the support carrier while
providing for flexibility in the event of unforeseen changes to the experiment design.
Another important goal for the design of the ECS was to ensure that the PAS can
accommodate the experiment structurally while minimizing the overall design cost.

The ECS has several advantages that are included in Table 4.

Table 4. ECS Advantages.

Light weight

Easy to build

Low cost

Extremely flexible to accommodate changes in the experiment design

Utilization of existing test fixtures and ground handling equipment

e No research and development program, special testing, or special
certification necessary (since constructed with proven methods and
materials)

Cost and readiness (schedule)

The current estimated cost to modify the USS for accommodation of the ACCESS
mission is $2.1-$2.4 million. A certified structure can be ready for shipment 12 months
after definition of the experiment and the interfaces to the USS. Because of the size and
weight limitations of the USS and the increased cost to modify the USS to accommodate
new PAS requirements (discussed below), the USS becomes an increasingly limiting
support structure.

The current estimated cost to build the new ECS is $2.2-$2.6 million. A certified
structure can be ready for shipment 19 months after definition of the experiment and the
interfaces to the ECS.

Table 5 below recapitulates the JSC carrier costs and readiness for side-
by-side comparison.

Table 5. USS versus ECS Comparison Summary.

e USS cost: 82.IM- §2.4M e« ECS cost: $2.2M - $2.6M
o USS readiness: 12 months « ECSreadiness: 19 months
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Mechanical interface to ISS

As mentioned. the current proposed attach site for ACCESS on the ISS is at the
upper-inboard S3 Site (Figure 11). All attached payloads at this site connect with the ISS
through the PAS interface illustrated in Figure 12.

The ISS program is currently working on Change Request 1135 (CR1135) that
will finalize the interface requirements for the PAS attach sites”’. CR1135 will define the
weight and center-of-gravity limits, the total volume envelopes, the Mobile Transporter
(MT) envelopes, and the extravehicular activity (EVA) and extravehicular robotic (EVR)
activity envelopes and requirements. Final results of CR1135 should be available by
spring or summer 1999. ACCESS accommodation requirements will not be ultimately
known until this ISS re-definition is completed. From discussions with Boeing
(Huntington Beach) in September 1998, it is obvious that the current design of the USS
launched on STS-91 on June 2, 1998, will not meet new PAS requirements expected
under CR1135. When the USS was designed, it was acceptable for the USS keel trunnion
to extend into the plane of the PAS (Figure 14). The USS was also well within the
published weight and CG capabilities of the PAS. With changes to the PAS
requirements, the intrusive keel is no longer acceptable because it comes within inches of
the PAS latching motor. Therefore, a retractable keel assembly will be necessary in order
to use the USS as a carrier. It is estimated that the retractable keel will be an extremely
costly burden on the USS. It is also likely that the weight and CG capabilities™
(Appendix F) that were initially issued in 1995 and then updated in 1997 (SSP 42131)
will become much more restricted for attached ISS payloads. This means that the overall
CG of any attached payload may have to be much closer to the PAS plane than originally
specified for USS design.

In addition to changes in the PAS envelope requirements, new equipment that
may have to be provided by the attached payload has been identified. This equipment
could add considerable cost to the attached payload. In order to ensure two-fault
tolerance on the S3 PAS sites, ACCESS may be required to provide an EVA unloadable
and removable capture bar which is a totally new requirement. This capture bar is part of
the passive half of the PAS that is mounted to the ACCESS payload structure. The
capture bar will probably have to be prelaunch-adjustable to ensure that the proper
preload is applied to the ACCESS experiment once it is on-orbit and attached to the PAS.
These new changes could prove to be fairly costly.

If ACCESS protrudes into the EVA pathways, it will probably be necessary to
add EVA handrails, tether attach points, and portable foot restraint (PFR) attach points to
the experiment or support structure. Video cameras or targets may also be necessary for
the berthing operations. Currently it is uncertain who is responsible for the cost of these
items. ACCESS will, at least, be responsible for the cost of their integration onto the
payload. It may also be necessary for ACCESS to pay for the development and/or
recurring manufacturing cost of some of these items.
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Figure 14. USS/ACCESS with PAS

[ ACCESS Experiment | T Tl

”

R

PAS Adapter
Equipment

Keel Trunnion Protrudes
Through PAS Plane

ACCESS on the USS

The ACCESS experiment weight and volume envelope that was used in our USS
study (Option 1, Appendix E) are shown in Figure 14 and 15. A structural model of
Option 1 was developed and added to the structural model of the USS design. After a
structural assessment was performed in the configuration shown in Figure 16, it was
demonstrated that the USS can be used for the ACCESS payload. Several modifications
will be necessary to accommodate the ACCESS experiment. An attempt was made to
minimize the cost associated with these changes, but the following changes are necessary:
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1) The calorimeter should be rotated 45 degrees (Figure 14, 16) to provide a
better load path. It was determined that this modification to the
experiment configuration will not adversely affect the science.

2) In addition to the eight existing attach points on the USS, two additional
attach points would be necessary (Figure 16). The interface between the
calorimeter and the TRD should be centered on the middle horizontal joint
as shown in Figure 16.

3) Redesign of the primary and secondary sill joints and the V-braces will be
necessary to accommodate the loads from the ACCESS experiment
configuration. The CG of the ACCESS experiment is considerably lower
than the USS was designed to accommodate. This means that high loads
will be applied to the support structure in places that were not designed to
take high loads.

A Finite Element Model (FEM) has been developed for this configuration. The
first natural frequency of the payload is 10.1 Hz, and the structure has only five modes
below 50 Hz. From Table 3, every Shuttle payload is required to perform a modal test
and correlate the FEM for all modes below 50 Hz. This means that the Option 1
configuration would provide for a relatively simple modal correlation. That directly
corresponds to less analysis and testing, and thus less cost to the project.

Preliminary results show all positive margins assuming such modifications are
made to the USS. It is also important to note that the USS is relatively insensitive to
structural stiffness changes of the science experiment portion as it evolves during
development. A consequence is that the experiment support structure per se (hardware
required to hold the three instruments in Appendix B together, not the carrier portion) can
be fairly light. The science hardware can then be a larger percentage of the total weight
allotted to each experiment.

In addition to the changes necessary to accommodate the ACCESS experiment, a
retractable keel would be necessary to provide the necessary attach location for the PAS
(as discussed previously). That in turn would require keep-alive power from the Shuttle
in order to extend the keel (Appendix H). A retractable keel also means more failure
modes, all of which require additional crew training. These added requirements would
result in additional cost to the USS modification for Option 1.
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Weight

Table 6 shows a weight summary for the ACCESS payload on the USS. The
current USS weight is a measured value. The additional weight to modify the USS is
broken into the weight necessary to accommodate the ACCESS experiment and the
weight necessary to make the ACCESS payload deployable on the PAS. Since the USS
is not optimized to carry the ACCESS experiment, the total weight for the support
structure is a fairly large percentage (22.50%) of the total weight of the payload.

Table 6: ACCESS Weight Summary on the USS.

Item Weight % of Total
lbs (kg) Weight
Experiment Hardware 8488 (3858) 77.50
USS Weight 1834 (834) 16.74
Weight to adapt ACCESS to USS 310 (141) 2.83
Weight to make ACCESS Deployable to PAS 321 (146) 2.93
Total Payload Weight 10952 (4979) 100.00
USS Advantages

Although the USS does require some redesign to accommodate the ACCESS
experiment, there are still several advantages of using an existing design for the ACCESS
support structure. ACCESS could take advantage of the fact that most of the design work
for the support structure has already been completed, and only modification design work
is necessary. This would primarily afford the payload savings of time because it is not
necessary to design a completely new structure. All of the ground handling and test
equipment that has already been developed for the USS could be re-used. Thisisa
significant amount of design and analysis work that would not be necessary.

USS Limitations

Although the USS can accommodate the ACCESS experiment as shown in Figure
15, the Principle Investigator for the Transition Radiation Detector (TRD) expressed a
strong interest in a larger detector than shown. The USS is physically not large enough to
accommodate a larger TRD (by volume). Additionally, the USS was designed to carry
the majority of the weight of the experiment at the eight upper attach locations. The
modifications necessary to support the ACCESS TRD dimensional changes add undue
weight to the original USS carrier.

Cost and Schedule

As part of this accommodation study, an attempt was made to estimate the cost
and schedule needed to modify the USS to accommodate ACCESS. The total cost of
modifying the USS for ACCESS will be approximately $2.1 to $2.4 million depending
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on the modifications that are ultimately necessary, the final payload weight. and the final
experiment design. This cost is based on actual experience with across-the-bay payloads
that have been flown by JSC recently (1998) in space. The cost includes the necessary
modifications to accommodate the ACCESS instrumentation and the modifications
necessary to incorporate the PAS into the USS.

A certified USS can be ready for shipment 12 months after the definition of the
experiment and the definition of the experiment-to-USS interfaces.

JSC carrier deliverables
The JSC total ‘turnkey’ carrier cost is broken out as deliverables in Table 7. The
term ‘turnkey’ refers to the utilization of existing JSC design, certification, and

integration (DC&I) methodology, personnel, and templates.

Table 7. JSC Carrier Deliverables (End-to-End Product).

e Design with interfaces to the experiment, Space Shuttle, and ISS
o All necessary structural analysis
o Complete fabrication and assembly
o Complete structural certification
e Modal survey testing
o Static testing
e All special test equipment
e Ground support and ground handling equipment
o (Component testing
e Materials testing
e Modal correlation
o Space Shuttle and ISS verification process support
ACCESS on new ECS

Because the USS was not specifically designed to carry the ACCESS experiment
and because ACCESS appears to be evolving toward a larger collecting power (a larger
detector seems desirable to improve the science results), several different Experiment
Carrier Structures (ECSs) have been analyzed under this Accommodation Study. The
main design goals of the ECS are to minimize the overall weight of the support structure
while providing for maximum flexibility in the event of unforeseen changes to the final
experiment instrument. Several different experiment options have been considered'®"",
but Figure 17 shows the final experiment configuration that has been chosen to provide
the best alternative (Option 3, Appendix E). As the figure shows, the experiment
dimensions and total weight have increased over those shown in Figure 15 (USS Option).
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To accommodate the experiment as shown in Figure 17, thirteen different ECS
structures were assessed (Appendix E). Figures 18, 19, and 20 show the ECS structure
that has been chosen by the ACCESS Accommodation Study team. To satisfy the design
goals that were set for the ECS, the following design decisions have been made:

e Utilize common aerospace materials for ease of
manufacturing and overall project cost savings (primarily
Aluminum 7075-T7351).

e Attempt to utilize only material properties directly from
Military Handbook 5G to avoid any additional testing that
will be required for more exotic materials. Portions of the
USS incorporate material thicknesses that are not shown in
5@, so reduced material properties were deemed necessary.
These reduced material properties unnecessarily affected
the design margins.

e Attempt to show preliminary design margins of 20% to
40% and decrease the margins as the design matures.

The ECS provides a stiff support structure, but it will rely on the ACCESS experiment to
provide some internal structural support. As more integration is performed between the
carrier structure and the internal ACCESS instrument structure, the overall weight of the
payload will be optimized.

The ECS configuration will be horizontal in the payload bay of the Shuttle. This
means that the ACCESS experiment will be pointed towards the Space Shuttle crew
cabin. In the USS configuration, the experiment was pointed straight up out of the
payload bay. As Figure 21 shows, the horizontal configuration allows for better
adaptability to the PAS. As discussed earlier, it is likely that the weight and CG
requirements for the PAS will become more limiting than previously published (e.g., CR
1135). If this occurs, it is in the best interest of any attached payload to have its mass and
CG as close to the PAS as possible. In the horizontal configuration of the ECS, the PAS
attachment point is on the bottom of the Calorimeter. Since the Calorimeter is the
heaviest portion of ACCESS, the PAS is very close to the payload CG. This feature is
desirable, as mentioned earlier in the discussion of Table 2. The result can be seen in
Figure 21 where the ACCESS payload is shown on the S3 truss of ISS.
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A FEM has been developed for this configuration. The first natural frequency of the
payload is 9.9 Hz, and the structure has only six modes below 50 Hz. Like the USS, this means
that the ECS/ACCESS configuration would provide for a relatively simple modal correlation.
This directly corresponds to less analysis and testing, and thus less cost to the project.
Preliminary results show all positive margins above 20% for this configuration.

Weight

Table 8 gives a weight summary for the ACCESS experiment within the ECS. The total
experiment weight is allocated as shown in Figure 17. As the table indicates, the ECS weight is
a much smaller percentage of the total weight (16.34%) than was the modified USS (22.50%).
The total weight of the ECS and PAS integration hardware is 2163 1bs with a total payload
weight of 13232 Ibs. The total weight of the modified USS and PAS integration hardware is
2465 Ibs with a total payload weight of 10952 Ibs. The ECS provides a support structure weight
savings of over 300 Ibs while increasing the total payload weight by 2280 lbs. This shows the
significant weight advantage of designing a dedicated structure for the ACCESS payload.

Table 8: ACCESS Weight Summary on the ECS.

Item Weight % of Total
lbs (kg) Weight
Experiment Hardware 11069 (5031) 83.66
ECS Weight 1903 (865) 14.38
Weight to make ACCESS Deployable to PAS 260 (118) 1.96
Total Payload Weight 13232 (6014) 100.00

It should be noted that some of the other ECS configurations studied (Appendix F) relied
more heavily on the ACCESS internal instrument structure to share some of the loads. Although
this can bring the weight down, it depends heavily upon a closely-knit science integration team,
and should one instrument’s schedule slip significantly, the collective program cost can be
increased dramatically. The total weight of the lightest ECS (including PAS integration
hardware) is 1808 Ibs (14.04% of total weight) with a total payload weight of 12877 1bs. Details
on this structure are available®®. Further definition of the ACCESS internal experiment structure
will lead to an even lighter ECS.

ECS Advantages

The ECS provides several key advantages simply because it optimizes the carrier design
for the specific ACCESS instrumentation. The structure is light weight, easy to build, relatively
low cost, and is extremely flexible to accommodate changes in the three respective experiment
designs. In addition, because the ECS will be built with proven methods and materials, the
structure does not require the added cost of a research and development program, or a special
testing and certification program. The ECS also provides the most viable option to accommodate
the yet undetermined PAS requirements in the ISS program. Because the ECS utilizes the same
Shuttle attach points as the USS, the existing ground handling and test hardware can be used for
the ECS. This represents a saving of a significant amount of design and analysis work.
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Cost and Schedule

Once again, an attempt was made to estimate the cost and schedule needed for the ECS to
accommodate the ACCESS experiment (Table 8). The total cost to build the ECS for ACCESS
will be approximately $2.2 to $2.6 million depending on the final payload weight and the final
experiment design (broken out as deliverables in Table 7). This cost is based on actual JSC
flight experience.

A certified ECS can be ready for shipment 19 months after the definition of the
experiment and the definition of the experiment-to-ECS interfaces.

Thermal control
Summary

Over its four-year mission, ACCESS will experience the full range of ISS environments
(Appendix G). It must be designed to withstand and function within all of them. The study
below was performed to identify the range of particular thermal effects that ACCESS will
encounter and possible means of dealing with them. Such an assessment of the overall thermal
feasibility of ACCESS is essential due to the temperature sensitivity of its instruments. This
payload has extremely tight thermal requirements that must be considered in both its overall
payload design and its internal detector design.

* Insulation and possibly heat pipes can be used to minimize thermal gradients.
* Total heat rejection can be achieved with reasonably sized radiators.

* A louvered radiator adds mass and complexity, but would reduce required
heater power.

* Thermal design within each detector is extremely important to assure minimum
temperature gradients and adequate heat rejection.

ACCESS thermal configuration

From the three separate baseline ACCESS instruments described in Appendix B (Charge
Module or ZIM, TRD, and Calorimeter), a total integrated thermal instrument for the study was
defined as depicted in Figure 22. As was shown in Figures 18-20, the detectors, avionics,
thermal control hardware and other miscellaneous items will all be supported and attached to ISS
by the ECS. For purposes of this thermal study, only the detectors were evaluated. Baseline
Option 3 dimensions, mass, and power dissipation were used (Table 9 and Appendix E). The
temperature limits arrived at by the Accommodation Study team principal investigators (Pls) are
shown in Table 10. Detailed thermal evaluation of the internal detector structure (such as that
described in Appendix B) and the avionics boxes (such as shown in Figure 19) were not part of
this thermal analysis because these are still undergoing conceptual design.
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Figure 22. Integrated ACCESS instrument (Option 3) for thermal analysis.

Charge Module

Calorimeter

Transition
Radiation
Detector

Table 9. Dimensions, power dissipation, and mass for baseline ACCESS thermal study

(Option 3).

Dimensions Exposed Surface Area Power Mass
Subsystem (m) (m?) (watts) (kg)
Charge Module (ZIM) 25x25x.5 9.25 58 360

Transition Radiation
Detector (TRD) 25x%x25x1.2 16.06 200 750

Calorimeter:

Si Matrix 1.257 x 1.257 x .55 2.75 38 1518
BGO 1.035x 1.035x .3 2.31 32 2142

Remote Electronics:
ZIM N/A N/A 58 N/A
Calorimeter N/A N/A 50 N/A
TOTAL: 436 4770
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Table 10. Temperature limits for baseline ACCESS study.

Operating Min/Max Min/Max Operating Allowed
Target Operating Survival Temperature Temperature
Subsystem Temperature | Temperature Temperature Gradient Variation
6 (°O) (S 0 O
Charge Module (ZIM) 5 -5/+20 -30/+30 <10 N/A
Transition Radiation
Detector (TRD) 5 -5/+20* -30/+30* N/A N/A
Calorimeter: <1-2/ orbit
Si Matrix 10 -25/430 -40/+40 <2 <2-3/45 days
BGO 10 -10/+30 -40/+50 N/A <5/ year
Remote Electronics:
ZIM 20 -30/+45 -40/+70 N/A N/A
Calorimeter 20 -5/+40 -45/+75 N/A N/A

*  Assumed value for TRD

ISS thermal environment

ISS will be at an Assembly Complete (AC) configuration by the time ACCESS is
launched. Our geometric thermal model is illustrated in Figure 23 for a static, feathered-array
configuration. At an altitude of roughly 435 km (235 nautical miles), ISS will orbit the Earth
every 93 minutes with the +Z-axis pointing at Earth and the +X-axis along the velocity vector.
The actual ISS attitude can vary by as much as + 15° around the X and Z axes, and +15°/-20°
around the Y axis.”

The natural orbital environment (solar constant, Earth albedo, Earth IR) and local
coupling effects due to ISS hardware itself, drive the thermal environment. The solar constant is
the radiation emitted from the Sun that reaches Earth. Earth albedo is the percentage of the
incident sunlight that is backscattered out into space again. Earth IR is the energy re-emitted
from Earth as long-wavelength infrared radiation. Table 11 summarizes the nominal natural
environment used for this analysis. Local effects must be calculated using appropriate geometry
and optical properties.

Table 11. ISS Nominal Natural Environment.

Solar constant 1367 W/m?
Earth albedo 27%
Earth IR 241 W/m*

A large contributor to variations in the ISS thermal environment is the solar beta angle. Beta
angle is defined as the smallest angle between the orbit plane and the solar vector (Figure 24).
For any spacecraft, the beta angle at a given time will be governed by launch inclination, launch
date and time, and the time of year. Figure 25 shows a sample of beta-angle progression. For
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ISS this angle will change periodically from -75° to +75°. At beta angles greater than 70°
parts of ISS will be in sunlight for the entire orbit.

Solar Vector

|
+p

/

&—— Orbital Plane

Figure 24. Beta angle definition.
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Figure 25. Sample beta angle progression with time.

The payload attach sites on both the S3 and P3 trusses are located outboard of the
ISS radiators and inboard of the solar arrays. Both radiators and solar arrays will
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articulate continuously and will influence the ACCESS thermal environment. Payloads
attached next to ACCESS could also have a significant effect. At this point it is uncertain
what payloads will be located next to ACCESS and how long they may remain there.

ACCESS will also have to withstand other environments prior to installation on
ISS. Shuttle Orbiter environments while undocked from ISS can be controlled by Shuttle
attitude. Once docked, however, ACCESS could remain in the Shuttle payload bay
and/or a temporary attach site for several days. These environments ISS operations
scenarios need to be considered also.

Thermal survey

A detailed survey was performed of possible ISS thermal environments for
ACCESS. The thermal model in Figure 25 which includes the ISS Assembly Complete
geometry and a representative ACCESS payload, was used to determine the six-
directional thermal environment at the S3 attach site®®. The S3 and P3 locations were
assumed to be symmetric. In all, 196 cases covering beta angles from -75° to +75° and
ISS attitude variation extremes were surveyed. Average sink temperatures based on
various optical properties were used as criteria to identify worst-case hot and cold
environments. These environments were then imposed on a more detailed ACCESS
model to size radiators and heaters. The hot case was used to find the amount of radiator
area necessary to keep the experiment at its desired operating temperature. This
configuration was then exposed to the cold case environments to find the necessary heater
power to maintain the desired operating and survival temperatures.

Thermal assumptions

ACCESS was evaluated as three independent detectors with properties as defined
in Tables 9 and 10. Since their operating and survival temperatures are similar, no heat
flow was considered between detectors. Electronics identified by the baseline study
principal investigators (Ps) as being able to be mounted apart from the detectors, were
also evaluated and treated independently (Figure 19 and 20).

The Charge Module (ZIM) and TRD detectors where modeled as single
isothermal internal nodes, connected to external surfaces and radiators. The Calorimeter
was modeled as two separate systems, the Si matrix and the BGO crystals. Each of these
was also modeled as a single isothermal node connected to external nodes and a radiator.
External surfaces were assumed to be insulated with 10-layer Multi-Layer Insulation
(MLI) to minimize gradients. Outer surface optical properties were assumed to be those
of Beta Cloth. Beginning of life (BOL) optical properties (a/e =0.34/0.92) were used for
the cold case while end of life (EOL) (a/e =0.4/0.88) properties were used for the hot
case. Radiators were assumed to have optical properties of Z93 white paint (a/e =
0.17/0.92). Silver Teflon would provide better radiator properties, but due to its highly
specular nature it may not be acceptable for use on ISS. Optical properties for louvered
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radiators were adjusted to take into account conduction between blades and radiator.
blocked views to space, and reflections off blades’. The outer surfaces of the louver
blades were assumed to be black anodized aluminum. A summary of optical properties
used in this study is shown in Table 12.

Table 12. Assumed Optical Surface Properties.

Surface Solar absorptivity IR emissivity
(@) )

Beta Cloth (BOL) 0.34 0.92

Beta Cloth (EOL) 0.40 0.92

Z93 White Paint 0.17 0.92

Louvered Radiator (open) 0.17 0.64*

Louvered Radiator (closed) 0.1* 0.1*

* Effective values

Radiators were assumed to be located facing the ISS wake (-X) direction. Other
possible radiator directions are less desirable for various reasons. The nadir (+Z) and
outboard (+Y) directions appear to be too warm, and the ram (+X) and zenith (-Z) sides
will probably require debris shields (Figure 21). Thermal resistance between internal
nodes and radiators was neglected in this study. This is a non-conservative assumption
which must be taken into account for detailed thermal design.

Thermal results

The hot case was found to occur at a beta angle of —75°, with ISS ina —15° yaw
(Y), 15° pitch (P), and 15° roll (R) attitude. By imposing this environment on the
ACCESS thermal model, the required radiator area to maintain detectors at their desired
operating temperature was calculated. The cold case environment (Beta 75°, YPR of
—15°,-20°,15°) was then imposed on the model using radiator areas from the hot-case
analysis. With detectors powered on, the amount of additional heater power necessary to

Table 13. Required Radiator Area and Heater Power.

Radiator Area Operating Heater Survival Heater
Subsystem (m?) Power (W) Power (W)
no louver w/ louver no louver w/ louver no louver w/ louver

Charge Module 0.45 0.75 73 0 53 11
TRD 1.6 2.7 210 0 165 15
Calorimeter:

Si Matrix 0.31 0.54 33 0 8 0

BGO 0.22 0.37 31 0 16 0
Electronics .34 0.55 2 0 30 0
Total 2.92 491 347 - 0 242 26
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maintain the operating temperature was determined. Heater power necessary to maintain
survival temperatures when detectors are not powered, was also found. A summary of
these results is shown in Table 13.

Results show that a total-radiator surface area (no louvers, no heaters) is sufficient
to reject 436 watts in a hot environment. Radiator surface area could be the surface of a
detector or a dedicated radiator. Actual radiator surface area will have to be larger to
account for thermal resistance between heat sources and radiators. Detailed modeling and
thermal design can determine this. Heater power (347 W operating and 242 W survival)
is required to maintain detectors at minimum temperatures. Results indicate that almost
no heater power is required if louvers are implemented. This is due to radiator
temperature being high enough to heat detectors. This is unrealistic, and heaters would
probably still be needed to minimize thermal gradients and temperature variation within
detectors. This too would have to be determined by detailed analysis.

The orbital temperature variation seen for all detectors was found to be minimal
(<1°C). This was expected because of the simplified model nodalization, high mass and
relatively small, insulated surface areas.

Thermal design considerations

Because the thermal environments at the payload attach sites will vary
significantly with changing solar beta angle, the detectors need to be insulated to
minimize gradients and orbital variations. This insulation will protect ACCESS from the
external environment, but will also keep the heat generated by the experiments
themselves from dissipating. Radiators then become necessary to get rid of the excess
heat. Isolating the electronics away from the detectors maximizes the allowable
insulation and minimizes radiator and heater requirements. Using louvered radiators
reduces the heater power necessary, yet adds complexity to the system. The use of either
a common radiator, or individual radiators per detector, needs to be evaluated and
optimized.

Getting heat from detectors to the radiators could be challenging. Solid
conduction paths (aluminum, copper, etc.) between heat sources and radiators would
require that radiators be located as close to the detector as possible, and could cause a
significant increase in mass. Any 250 mil aluminum avionics shielding from trapped
electron-proton radiation, however, could serve as such a conduction path. Heat pipes are
a viable low mass option using a closed two-phase liquid-flow system to move large
amounts of heat from one location to another. The driving force for moving fluids is
capillary action, which is greatly affected by gravity. Ground testing of non-horizontal
heat pipes is therefore a major concern. Heat pipes should also be considered for
minimizing gradients within ACCESS detectors and in the radiators themselves.
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ACCESS Avionics & Power

Avionics is an acronym for “aviation electronics” which has also come to be all-
encompassing, meaning aerospace electronics. Avionics necessarily requires distributed
electrical power. For the ACCESS baseline study, it was determined that a central
avionics and power box was necessary to manage the ISS accommodation resources
(power and data) provided in the PAS UMA interface shown in Figure 12 and indicated
schematically in Figure 26.

Charge Module TRD Calorimeter

v1 v1 vl

Electrical Harness/Instrument Data Bus I

Y

Central
R B CPU
Multi-layer Avionics Data Storage
Redundancy Power Conversion
Central Timing
r Synchronization
UMA Triggering
ACCESS (Passive) Telemetry I/F
Command I/F
ISS UMA Heater Control
(Active) Housekeeping
etc.

PAS

Figure 26. Functional ACCESS avionics, data, and power overview.

These PAS resources (Figure 26) are distributed to the three instruments in the functional
fashion shown and the two-way data links are established. A detail of the central avionics
box is given in Figure 27. When necessary, its functions include central microcomputer
processing, data storage, power conversion, central timing, synchronization, triggering,
telemetry data and command interface, heater control, and general housekeeping. PAS
power and data interfaces include a utility power feed for pass-through to the attached
payload via the UMA. Both the electrical and the command and data handling (C&DH)
interface between the PAS UMA and the ACCESS payload is handled by means of the
Avionics & Power Box (Figure 26 and 27). Trigger control can be run along the
electrical harness. ‘
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Figure 27. ACCESS Avionics & Power Box concept.

Electrical Power

The ISS provides 113-124 VDC utility accommodation power as measured at the
PAS UMA. Power quality is specified in the ISS External Payload Interface Definition
Document. As shown in Figure 27, this electrical power is either fed through directly or
undergoes a power conversion in the power module. At the time of writing this Report,
the Accommodation Study team PI’s are unclear as to whether they want converted
power, or they want to do their own conversion, or both. The power is then routed via an
electrical harness (Figure 26) to the respective instrument or instruments. An optional 28
VDC STS electrical power interface is also shown in order to alleviate STS
accommodation incompatibilities discussed in Appendix H.2. A 28 and 120 VDC heater
control system could then operate off of both STS and ISS power accommodations

without additional conversion.

Present estimates indicate that the ACCESS avionics will require 436 watts for
normal operations. An additional 200-400 watts may be required in order to maintain the
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proper operating temperature. When the electronics are off, 200-400 watts of keep-alive
power appear to be required, depending upon the final thermal control system design.

Data Interfaces

In addition to the power interface there are potentially three command and data
interfaces between the ACCESS payload and the ISS: a fiber-optic high rate forward link
(uplink), a fiber-optic high rate return link (downlink), and a MIL-STD-1553B data bus
for both forward and return low rate data. The high rate fiber-optic forward link will not
be addressed here because there is no obvious use for it on ACCESS and the ISS Ku-band
forward link has not been defined at this time. (The medium rate link [E-net] is not
available to external payloads.) Therefore, the interfaces of concern in the Avionics &
Power Box concept of Figure 27 are DC power, the 1553 data bus, and the high rate
return link.

Command, Control, and Monitoring

Figure 28 is a simplified block diagram of the entire ISS payload command and
data handling system (C&DH). Figure 29 illustrates that portion of the ISS C&DH
system which basically supports ACCESS. Connections to other payloads are not shown.
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Figure 28. 1SS C&DH system, payload data subsystem summary.
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There are two ISS payload MDMs. MDM 2 is a backup and is brought on line
manually in the event that MDM 1 fails. Unlike the MDMs, the two Automated Payload
Switches (APSs) are used simultaneously.

Low rate data is obtained by the active payload MDM via the 1553 data bus at a
maximum rate of 20 kilobits per second (kbps). In the unlikely event that there is any

ACCESS ISS
Erew interface (laptop)
1553b Data Bus Payload Command To S-Band
-« | MDM(s) and Control Forward and Return
MDM(s) Links

High Rate Data

Fiber-Optic }‘C’I:(n‘:;?r‘;“"
Aut ted Payloa L Comm Outage _> High Rate Frame ——
Switch (APS) Recorder (COR) Mux (HRM)
113-124 VDC
-

Figure 29. ACCESS/ISS C&DH interfaces (simplified) in Figure 27.

ACCESS data associated with crew or vehicle safety, that particular data will be routed to
the ground via the Command and Control MDMs (C&C MDMs) and the S-Band
telemetry system. All the ACCESS data acquired via the 1553 data bus will be combined
with the rest of the 1553 data acquired by the Payload MDM from other payloads and
will be transmitted to an APS via fiber. Operationally, the active payload MDM should
always be switched to one of the eight APS output lines.

High rate telemetry is sent directly from ACCESS on the fiber-optic interface to
the APS shown in Figure 29. As currently planned, only two of the payload direct links
to the APS will be switched to the Communications Outage Recorder (COR) and Ku-
Band telemetry system at any one time. The return-link rate allocated to the APS output
at this time is 43 megabits bits per second (Mbps). The HCOR, which is the operational
version of the COR, will have the capability to store 220 Gbits of data. Because of
communications outage and the fact that multiple payloads will be competing for
resources on the APS output channels, as much data storage as practical should be
provided within the ACCESS payload (Figure 27). Multiple playback rates will be
required. _
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Figure 30. Alternate ACCESS/ISS C&DH interfaces (simplified) in Figure 27.

An alternate high rate telemetry connection is illustrated in Figure 30. The high
rate data is passed via the APS to equipment in one of the pressurized modules where it
can be recorded for deferred playback or on media that can be returned to the ground by
the crew. The advantage of this approach is that the design options are not frozen-in
years prior to launch and modern recording equipment can be used, and even upgraded as
advancing technology permits, in a shirt-sleeve environment.
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Figure 31. Typical APS connectivity.
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The disadvantage of such an approach is that pressurized module accommodations
will be required as well as another APS connection. Figure 31 indicates a typical APS
connection.

Ground commands are sent through the ISS S-Band system and are implemented
using the 1553 data bus interface (Figures 27, 28, and 29). Command words are 64
words long (including 11 words of overhead). Eight commands per second are available
for all payloads combined.

Crew interfaces

The ISS flight crews are intimately involved in all ISS payloads. Table 14
clarifies this.

Table 14. ISS flight crew interfaces.

From the ISS cupola, the crew will be manually involved in the remote, robotic
attachment of an ACCESS payload at the PAS.

The crew has a C&DH interface.

The crew has a failure mode function for all payloads.

The crew will probably be in physical contact with the payload at the PAS.

The payload cannot jeopardize the safety of the crew.

Crew C&DH interface capability for a limited amount of data display and
command is provided by an ISS-issued laptop computer connected to the payload MDM
1553 data bus (Figures 22, 23, and 24) as a portable computer system (PCS).

Environmental issues

ISS environmental issues which impact the ACCESS payload are presented in
Appendix G. Some are simple and straightforward, while others are far-reaching and
significant. Strategy consists of control plans and mitigation plans. Only three examples
will be discussed here. Additional environmental issues, safety reviews, and control
procedures which impact ACCESS design, development, and operations are deferred to
Appendix G.

Control Plans (EMI example)
o EMI

A straightforward example is electromagnetic interference (EMI) which will be a
fundamental consideration during the detailed design and development phase

(Implementation Phase, DDT&E) of ACCESS. An SSP EMI Control Plan (EMICP, SSP
57010 cited in Appendix D of this study report) outlines the process required by the ISS
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community in order to ensure electromagnetic compatibility (EMC) between ACCESS
and other ISS systems as well as other ISS payloads.

Hazard Mitigation Plans

An example of a far-reaching consequence of the on-orbit LEO environment is the
hazard to payload instrumentation and avionics represented by particle radiation. Sources
include the Earth's trapped radiation belts, the Sun, and the Galaxy (Figures 32 and 33).
For this circumstance there is no control plan. Rather, risk mitigation rests in payload
design, ops procedure, shielding strategy, and an existing JSC radiation-level
measurement plan.
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Figure 32. Proton flux in LEO as a function of energy®’.
* Radiation hazards

For the purpose of this ACCESS Accommodation Study, a radiation hazard
analysis for payload avionics and electronic components was conducted based upon JSC
computer simulation codes for the Earth’s trapped radiation belts (Appendix G, lonizing
Radiation). By definition, this study was conducted for an ISS altitude of 500 km which
is a programmatic requirement. That altitude is a firm ISS hardware-imposed limit
arising from the fact that the Russian Soyuz cannot go above 470-480 km and still de-
orbit. Therefore, the trapped electron and proton fluxes (Figures G.8-G.11) along with
the shielding curves (Figures G.12-G.14) can be used directly as a worst-case data
analysis for a 2-c margin of allowable dose. The SSP requirement for ISS altitude will
always place it lower than those figures, thereby being further removed from the trapped
radiation belts which reduces the hazard.
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Figure 33. Particle flux** in LEO as a function of LET®.

Phase 1 of the ISS program was the joint U.S.-Russian Mir program orbiting at an
altitude similar to ISS (Mir: 51.65 degree @ ~ 381 km). One objective of Phase 1 was to
define the radiation-level environment as a hazard. This was done by JSC's Space
Radiation and Analysis Group (SRAG), the data are available®, and the same SRAG
detectors are slated for the ISS (the TEPC and CPDS - see Acronyms, Appendix J). The
CPDS is already on-board the ISS (second-element launch, Flight 2A in Appendix C). It
has a five-year life-cycle, and the ACCESS Accommodation Study team has discussed
how CPDS-II might be modified to complement and support ACCESS requirements
when CPDS is upgraded in 2003.

Having introduced the ISS radiation hazard and the JSC SRAG measurement
plan, how should ACCESS cope with the problem of a cosmic ray that penetrates payload
electronics as illustrated in Figure 34?

Insulating
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Depiletion Region
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Significantly Less Vaume than Bulk CMOS,

Figure 34. Radiation hardening and avionics failure mitigation.
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The subject is well understood and has been thoroughly discussed”. We now
introduce the concept of a hazard mitigation plan (HMP). These are diverse, and the
topic has a rich heritage. O'Neill has pointed out* that two philosophies have emerged
over the past 30 years for radiation HMPs: (1) The chip-by-chip method using a
preferred parts list (PPL); and (2) The system-level approach using COTS from an
approved parts list (APL). Both methods have been used successfully in spaceflight.
These are contrasted in Table 15.

Table 15. Contrast between radiation HMPs.

Approved Parts Strategy Preferred Parts Strategy
o Use rad-hard approved parts. « Use rad-hard preferred parts.
o System-level testing (APL) * Chip-by-chip certification (PPL)
* Test "whole thing." e Design is NASA-unique.
* No latchups to LET ~ 15 » No latchups to LET > 35
* MTBF ~ 10 years s MTBF ~ ?? years
e Practical, latest technology * Expensive, frozen-in
e Fallacy: Proton-beam only. « Fallacy: Non-existent parts.

Radiation hardening (for rad-hard parts) is an avionics design strategy aimed at
minimizing single-event phenomena (utilizing EPI layers, CMOS SOI, dielectric
isolation, guard rings, cross-coupled resistors, oxide composition and thickness
assessment, and voltage derating - see Acronyms, Appendix J).

The PPL-method is well-known, being the chip-by-chip rad-hard certification
procedure meeting military standards to some high LET (e.g., LET ~ 36). It was the
NASA culture until approximately three years ago. It results in virtually 100% assurance
of mitigation. However, it is cost-prohibitive; and it freezes-in the design early in the
Design, Development, Test, and Certification (DDT&C) to such an extent that the
avionics parts may no longer exist when the payload gets to its implementation phase or
DDT&E (see Acronyms, Appendix J, and Note 1). This happens in a robust technology
when industry has stopped producing the parts commercially in lieu of better products.

The APL-method is newer, having appeared in the ISS era as part of the "faster,
smaller, cheaper" method apparently favored by the NASA Administrator. Basically, one
places "the whole thing" (e.g., avionics box, PC, printer, etc.) in a 200 MeV proton beam.
It is an integrated, system-level beam test performed with the entire electronics system
operating*’. It emulates an LET of 15 MeV-cm?/mg, catching all failure modes with
MTBF 10 years. It also provides data for predicting system-level on-orbit failure rates.

The advantages of the two DDT&C approaches are compared in Table 16. In
both strategies, all designs are assumed to be "radiation smart": (a) EDAC for critical
RAM (memory and cache); (b) protected executable code; (c) system redundancy (self-
checking, watch-dog timers, etc.); and (d) shielding (optimal). Shielding up to ~ 250 mils
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Figure 35. Effectivity of shielding in the trapped belts at ISS altitudes.

as shown in Figure 35 does help for the trapped-belt radiation. Obviously, when known
EEE rad-hard components are available and cost-effective they can be used in both
methods.

Table 16. Comparison of DDT&C radiation hazard mitigation strategy.

System-level COTS Chip-level, LET-specific
« System-level, high confidence » Chip-level, 100% confidence
* Chip-level, undefined « System-level, undefined
s Flexibility *» Frozen-in
» COTS » Unavailable parts
« Test cost - $300/hour s Test cost - 1 WYE/chip

In summary, there is no PPL in the ISS program. There is an APL (at the Boeing
Radiation Effects Laboratory website, with URL links and pointers elsewhere). The
current ionizing radiation requirements are given* in Table 17.

Table 17. Ionizing radiation requirements.

« Avionics "... shall meet performance and operability requirements while operating
within the natural radiation environments as specified in ... "
* Shuttle
-NSTS 07700 Volume X Books 1 & 2
-Flux vs. LET for 57 degree x 500 km orbit, solar minimum, 100 mil shielding
-SEE only
* Space Station
-SSP 30512 Rev. C
-Flux vs. LET for 51.6 degree x 500 km orbit, solar minimum, 50 mil shielding or
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actual shielding
-SEE and Total Dose

The spacecraft avionics requirements in Table 17 are not relegated upon science
payloads. For the ACCESS payload, the Accommodation Study team recommends a
hybrid combination of the system-level (COTS APL) and chip-level (rad-hard PPL)
radiation HMPs. This allows for the obvious use of known, inexpensive rad-hard circuity
components (e.g., rad-hard EEE PROMs) when they are COTS - but in the system-level
APL method defined for the ISS program. Rad-hard components are not required,
however, if the system can pass the proton beam test. The method is currently being
adopted at JSC for the MARIE-Mars 2001 program®. It is summarized'®*’ in Table 18.

Table 18. Recommended radiation HMP for ACCESS.

*SSP 30512, Rev. C
- 250 mils shielding
-Appendix G, Figures G.9 and G.10
» Adopt system-level performance requirements, not "rad-hardness" of components.
-Allow flexibility.
-Allow reasonable, quantified risk.
-Allow use of robust modern technology.
* Adopt rad-hard components as an option, when cost-effective and COTS.
» SEE strategy
-A little bit of shielding helps, low-energy (250 mils Al equivalent).
-Ops work-arounds, high-energy events
-Fail operational, fail safe design (multi-path circuit design)

The ISS APL can be found at the Boeing Radiation Effects Laboratory website
(Appendix K), with links to the ESA database as well as to parts lists at JPL, ERRIC, and
GSFC. The JSC APL site is also given in Appendix K.

» Micro-meteroids and orbital debris hazards

The meteoroid and orbital debris hazard in the ISS environment is particularly
relevant to ACCESS because the baseline TRD instrument (Appendix B.3) contains a
pressurized tank system. Until such a TRD conceptual design is brought into compliance
with the NSTS and SSP safety review process, ACCESS will not fly on STS or the ISS.

Details of the subject hazard models are defined in SSP 030425, Rev. B, Section
8, and the debris model is available elsewhere”. An initial risk assessment for ACCESS*
was the basis for the debris shields depicted in Figure 21. These are referred to as
"Whipple' shields or 'bumpers' (cf. photos in Johnson*’). For instrumentation with a FOV,
these function much like an automobile windshield on a freeway which keeps flying
particles from entering the eyes of the driver. Some 200 ISS shielding types are available
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(Whipple. multi-shock, mesh double bumper, stuffed Whipple, etc.) using ceramic cloth,
metallic mesh. fabric, toughened insulation blankets, and aluminum. The toughening
enhancement adds Nextel to the thermal blanket, between the beta cloth and the MLL

The Micro-Meteoroid & Orbital debris (MMOD) analysis process is summarized
in Figure 36. It includes actual hypervelocity impact testing in JSC's HITF.
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Figure 36. MMOD analysis process*.
» ACCESS pressurized gas system (TRD)

The toughening procedure mentioned above was applied to the flight qualification
of Rocketdyne’s Plasma Contactor Unit (PCU) tank system*’ in the ISS electrical power
system. The net result is functionally illustrated in Figure 37, showing the tank, Kevlar
fabric, Nextel fabric, aluminum foil, and aluminum alloy shield. The spherical tank has
been transformed into a system. It becomes a box (illustrated previously in Figures 19
and 20). Configuration details of the PCU Box system are given in Appendix 1.
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Figure 37. PCU MMOD design®.
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The ACCESS Accommodation Study team recommends adopting the PCU tank
system for utilization by the TRD instrument. The rationale is simply that the Boeing-
Rocketdyne PCU tank system design has already gone through an ISS flight qualification
procedure (Figure 36) to protect the high-pressure Xe tank on ISS, with a PCU-shielding
probability-of-no-penetration (PNP) of 0.9988 over 10 years (exceeding the ISS safety
requirement of PNP = 0.9955 over 10 years). Also, crew training for topping off or re-
filling the gas supply is essentially the same as for the ISS electrical power system. That
results in another cost benefit.

Utilization of the PCU tank system for ACCESS constitutes a re-flight of the
Rocketdyne unit and therefore considerably simplifies the safety review process (Table
19 below). Re-flight hardware usually begins at Phase III.

With respect to costs for the PCU system, these are recurring. The following
estimates in Table 19 have been arrived at*®. The Xenon gas costs are appreciable, for the
flow tests, purity tests, acceptance tests, and qualification tests.

Table 19. Rocketdyne PCU tank costs.

e PCU tank system (3 flight boxes) S120K
e PCU tank system (3 prototype boxes for tests) § 90K
e Xenon refills (per fillup $40+K)

o Xenon refills, total 3500K
o Total $710K

Robotic interfaces

The robotic interfaces with the ISS are functional as well as comprised of
hardware. These are described in NSTS-21000-IDD-ISS, Sections 13 and 14. Currently,
the ISS only has one type of hardware grapple fixture called the Power and Data Grapple
Fixture (PDGF). The requirements for this system are not fully defined. They will
eventually be specified in SSP 57003. More details on this system are listed in the
Carrier Issues section of this report and Appendix H.

Safety

Station-wide safety is the subject and responsibility of NASA's safety review
process. All payloads such as ACCESS which will be integrated into the Space Shuttle at
KSC for flight to the ISS must meet the flight and ground safety requirements of the
following documents (Appendix D):

Flight Safetry: NSTS 1700.7B; NSTS 1700.7B, ISS Addendum; and NSTS/ISS 18798B.
Ground Safety: KHB 1700.7B.
Flight and Ground Safety: NSTS/ISS 13830C.
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The flight and ground safety processes for payloads are specified in NSTS/ISS
13830C. The primary safety task is the preparation of Payload Safety Data Packages
which contain descriptive information, identified hazard reports, and supporting data.
These data packages are submitted to the NASA Flight and Ground Payload Safety
Panels for review and approval at phased meetings. The maximum number of meetings
that could be held is four for flight safety (Phase 0, I, II and III) and four for ground
safety (Phase 0, I, Il and III). These are not to be confused with procurement phases
(Note 1). The phases are defined in 13830C, Section 6 and 7. The timing of the safety
reviews is shown in Table 20.

Table 20. Timing of Payload Safety Reviews.

Phase 0  Conceptual design established.

Phase I  Preliminary design established (PDR level).

Phase II  Final design established (CDR level).

Phase Il Most of the testing, analyses, inspections, etc. completed.
Must be completed 30 days prior to start of payload
activities at the launch site (usually assumed as delivery
at launch site).

The actual number of safety reviews depends upon the ACCESS payload
complexity, technical maturity, hazard potential, and whether it is a reflight. The latter
(reflights such as the PCU Box in Appendix I) can begin at Phase III.

The safety review process includes hazardous payload commands which must be
identified and annotated at the Phase I safety review and incorporated into the Payload
Command and Data Integration Data File (SSP 52000-A04) and the Payload Data Library
(PDL).

Testing and verification requirements are also specified in NSTS/ISS 13830C.
The type and depth of verification is dependent upon the phase of the safety package and
its review. Examples of some of the verifications are as follows: structural verification
plan, structural analyses and tests, fracture control plan and report, material assessments
and tests for toxicity, flammability and stress corrosion, fault tolerance analyses and tests
for electrical and mechanical systems, battery tests and analyses, electromagnetic
interference (EMI) tests and analyses, sharp edge inspections, grounding and bonding
tests, sealed container and pressure vessel analyses and tests, laser or ionizing radiation
assessments and tests, etc.

The key to a successful payload safety program is prompt and complete submittal
of information to the Payload Safety Panels via the safety data packages. Examples of
the review process are as follows. Selection of Aluminum 7075-T7351 for the primary
payload structural support material, chosen from accepted mature standards for
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spaceflight, would contribute to a successful safety review. The choice of a robust
composite material for carrying primary structural loads which is not in the handbook for
spaceflight standards could lead to numerous delays. As secondary structural load paths,
composites may be satisfactory, however. “Failure™ in the safety review process means
the item is not approved for the next level of review for lack of spaceflight readiness.
The consequence can be a major impact upon payload program schedules and costs.

Costly redesign and re-certification work can be avoided by early identification of
potential hazards and spaceflight readiness, as well as early approval of hazard controls
and verification methods by the Payload Safety Panels. The NASA-JSC Mission
Management Office support concept is recognized for its ability to assist payload
customers with all aspects of the flight and ground safety process.

Integration, verification, and test IV&T)

Under the JSC templates for STS and ISS payload integration, verificatioh, and
test (IV&T), the science instrument and the accommodation payload support structure
(APLSS) finally come together at KSC. Figure 38 describes this IV&T process. That
complete support structure consists of the ECS (or USS) in Figures 13-21 fully integrated
with the ancillary avionics (power, data, and communications) in Figures 26-27.

Experiment Hardware Exgenment Hardware Stand-Alone
Delivered to KSC

Developed @ | Oft-line Payload —»| Sub-Assembly &

Experimenter’s Sites P . yE il Functional Testing

Support Structure & ﬁ\ltlg p:)artti:r:r:?l:ir\::’e Stand-Alone

Integration Hardware > Deli?lere d to KSC —3| Sub-Assembly &
Functional Testin

Developed @ NASA line Payload Facility g

J:Yﬁhégg‘?r% Perform Integrated | F:E\f:g::{‘et dl-::trgware P
KSC Functional Testing Support Structure
A
KSC Moves KSC Performs KSC Performs
Payload to LPIS |—| IVT/ETE Tests in » WT & CG Tests —»@
Stand @ SSPF LPIS Stand in LPIS Stand

Figure 38a. Conceptual launch site operations flow chart for an ISS science payload
(modeled from the actual STS-91 mission for the AMS Orbiter).

62



KSC Performs

®_, PAS IVT/ETE
Tests @ SSPF

KSC Moves
Payload to
Launch Pad

KSC Performs
1SS P ORBITER Orbiter IVT/ETE
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KSC Removes Payload
'(\DAI:{SBSIES From Orbiter and Returns
It to Off-Line Payload Faciltiy

KSC Installs Payload
In Orbiter Payload Bay

Ship Hardware Back Remove Experiment Perform Post-Flight
To Experiment & < Hardware From < Integrated Functional
NASA Sites Support Structure Testing

Figure 38b. Conceptual launch site operations flow chart for an ISS science payload
(Continued).

The APLSS is actually an Accommodation Interface Device (AID) or a Payload
Interface Device (PLID) which provides and maintains all of the accommodations for the
payload science customer. This final integration begins at KSC, continues into the
Shuttle payload bay, and is the resource for interfacing with the PAS and UMA (Figure
12) while on the ISS.

KSC Operations

The flow chart in Figure 38 gives the overall flow of events for launch site
operations. Mission management (defined below) will coordinate, plan, and see that all
of these events are carried out. Most of the operations involve coordination between the
experiment developers and the launch site operations personnel. The launch site
operations personnel include safety, reliability, quality, operations per se, management,
etc. The steps that are shown in the figure are meant to indicate a general process flow
for the payload as it progresses through the launch site operations and emerges in the
Shuttle payload bay. Additional steps may be necessary, and specific procedures and
operational details must be documented and reviewed by KSC operations and ground
safety personnel at that time.

Mission Management coordinates KSC operations and payload processing

requirements through a series of Ground Operations Working Group (GOWG) meetings
at KSC. These GOWG meetings are conducted throughout the payload development
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process. Payload processing and verification requirements are documented in the
Payload Launch Site Support Plan and the Operations and Maintenance Requirements
and Specifications (OMRS) Document.

Additional details of KSC operations are illustrated in the DC&I master schedule
and KSC schedule under “ACCESS Conceptual Accommodation Schedule” given below.

ACCESS operations

A post-launch functional test of ACCESS prior to unberthing from the Shuttle
payload bay may be performed. Following deployment at the PAS, one-orbit payload
operations would proceed.

The initial phase of ACCESS operations involves experiment activation,
commissioning, and preliminary checkout. This period will last probably 15 to 30 days,
during which time the entire instrument is calibrated by adjusting thresholds and other
operational instrument parameters. It probably will involve various forms of self-test.
Interfaces between the three detectors (CM or ZIM, TRD, and CAL) will be verified as
well.

ACCESS will then enter routine operations, requiring minimal monitoring and
relatively small daily uplink capacity. What is important will be the downlink of the
experiment data. ACCESS has a relatively low data rate and will perform little on-board
processing. Delivery of the downlinked data (Figure 39 below) to an ACCESS
operations and data distribution center will be necessary for detailed evaluation of the
cosmic-ray experiment. This center will also perform operations and contingency
planning in coordination with the ISS operations team and ISS schedules or time-lines.
There also will be known periods of reduced science data recovery and ISS
communication outage.

Full-scale ACCESS operations will then be carried out. Aside from monitoring
cosmic-ray events and general housekeeping plus commands, an example of ops would
be the proximity operations during Shuttle rendezvous and docking when the ISS solar
arrays are feathered and ACCESS would be placed in a keep-alive mode. Another
example would be the topping off or re-supply of the TRD PCU tank system gas.

Failure modes are conditions that arise during mission operations when a
spacecraft component breaks or malfunctions. The failure could be within the payload, or
within the space or ground segment of the ISS. In either case, they can compromise the
science objectives of the ACCESS experiment. Failure Modes and Effects Analyses
(FMEAs) need to be conducted to anticipate these and preclude as many as possible
through a fail-operational design strategy. However, FMEAs were not a part of the
ACCESS Accommodation Study and must be taken up in a subsequent phase of the
program.
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Science data interface

The end-to-end ISS payload data flow is illustrated in Figure 39 (MSFC-SPEC-
2123B). This figure shows the functional ground and space segment architecture for ISS
payload science data, involving the White Sands Complex (WSC), JSC's Space Station
Control Center (SSCC), the Goddard Space Flight Center (GSFC), and the Marshall
Space Flight Center (MSFC).

ISS Ground Segment

It is MSFC that is responsible for the ISS ground segment payload data
processing and distribution. This includes definition, design, development, and
operations. To fulfill their responsibility, MSFC is developing the Payload Data Services
Systsem (PDSS) shown in Figure 39. The PDSS is to be installed in the MSFC
Huntsville Operations Support Center (HOSC) to support on-orbit ISS payload
operations.

GROUND
SYSTEMS
STATION
VIDEO
DISTRIBUTION |wnms SANDS COMPLEX] GSFC
Ku-BAND AND S-BAND \
RETURN LINKS —— e — KuPANDRETURNLINKG _ SBANDRETURNUNK -
~ MSFC .
)
\YLOAD I
1

. |
ssSce m POIC

UOFs

y *

7 T
PAYLOAD UPUNK4 *PAYLOAD DATA

investigator Sites

UPLINKS

Figure 39. End-to-end ISS payload data flow.
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The PDSS in Marshall's HOSC will receive, process, store, and distribute ISS Ku-
band data to the user community. This includes a number of the sites and facilities shown
in Figure 39, and in particular the science investigator sites for ACCESS. The PDSS will
interface with the Payload Operations Integration Center (POIC) to handle, store, and
distribute to the ACCESS user community ground ancillary data, payload health and
status data, and ISS core systems data. In addition, the PDSS will process, store, and
distribute the ISS COR data for the payload user community as part of the Ku-band
downlink. Core systems data will be contained in the S-band stream while payload
science data will be in the high rate Ku-band stream.

On-board Architecture (Space Segment)

The baseline ISS onboard payload architecture is depicted in Figure 40, which is
similar to Figure 28 but focuses upon ISS module geometry. It consists of a central
backbone payload network comprised of payload command/control, high rate data, and
medium rate data with mutiple ISPR-to-ISPR communications media as shown. This
was discussed earlier. Devices attached to these media are indicated, with acronyms

defined in Appendix J.
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2
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M) 19
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. 15538 Control Bus
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MDM | MSU Computer (2) MDM | MSU Computer (2) . Centrifuge
l 1 Attached
. . Module
- .
- .
L ]
] ® ® JEM
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APS | | PDM ISPR | eee | 1SPR | ISPR | *** | 1SPR POM | | APS Portable /e e /
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Figure 41. ISS onboard payload architecture.
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Functional Command Flow

The Command and Control MDM (C&C MDM) provides the top level control
functions for the ISS. The Payload MDM's provide the primary interface with the System
C&C MDM's for resource allocation and reception of ground-based commands and data

CCcsDs

Packets w

White Command

Sands & Control
i A

AL
/— Contro! Bus

[rmaner - g

@
©
®

Payload Local Bus @

Controller

Figure 41. Payload MDM functional data flow.

for payloads such as ACCESS attached to its 1553B local buses. Payload MDM
commanding, then, can be visualized as a four-step process in Figure 41 based upon the
architecture in Figure 40. A command packet originates from the ground (White Sands)
or the crew PCS. Otherwise, it is a timelined one. It then is routed to the appropriate
Payload MDM which directs it to the target payload on its local ISPR bus. For ACCESS,
the packet would arrive on one of the three starboard ports shown in Figure 40.
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The basic ISS command processing overview is summarized in Figure 42.
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Figure 42. Functional ISS command flow.
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NASA Mission Management Office

Summary

In order to maximize the potential for successful and timely deployment of the
ACCESS payload on the ISS, the Accommodation Study team recommends that the same
single-interface managerial structure used effectively in the Alpha Magnetic Spectrometer
(AMS) program should be utilized for management of the analytical, physical, and
operational interfaces required for ACCESS. Thus, it recommends that a NASA Mission
Management Office (MMO), or its functional equivalent, be established for the ACCESS
program and serve as interface or liaison to the Shuttle and ISS Program Offices. This
would include overall mission integration for the ACCESS Program Office and ACCESS
payload community. The Mission Management Office could be established at any NASA
center, although it is presently at JSC. As a concept, JSC experience with STS and ISS
payloads has shown that the MMO strategy is the most cost-effective approach for
mission integration and accommodation.

Mission management functional tasks are given in Table 21.

Table 21. Mission Management functional tasks.

Management interface to Shuttle and ISS programs

Payload consultation for ACCESS payload community

« Payload safety representative to flight and ground safety panels

 Negotiation of payload integration requirements

Payload physical integration management and mechanical interface
development

Payload training coordination

Payload flight operation and mission support coordination

» Post-flight support

The Mission Manager provides the planning for the overall integration of the
payload into the Space Shuttle and ISS. This involves negotiating and documenting all
payload interfaces with the Space Shuttle and ISS program offices. Typical interfaces
include structural (or mechanical) design, thermal design, electrical power, command and
data, and robotic and crew interfaces. Since the JSC MMO will have completed all these
tasks for AMS as the first ISS attached payload, this valuable experience should lead to
significant savings in time and cost to NASA and the ACCESS program.

The Mission Manager negotiates payload compliance with respect to Shuttle and
ISS requirements. This effort involves in-depth knowledge of the applicable program
requirements and their current interpretations to negotiate payload compliance
successfully. ACCESS compliance with these requirements will be tracked in the
Certification of Flight Readiness (CoFR) process, the flight and ground safety process,
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and the program specific ICD waiver process. The Mission Manager provides the
coordination between the ACCESS science instrument developers and the Shuttle and
ISS programs to complete this effort.

The Mission Manager provides assistance and advice to the ACCESS payload
community related to payload mission success. This is based upon previous payload
experience and interaction with Shuttle and ISS program personnel. Included in the
mission success task is the verification of payload compatibility with all Shuttle and ISS
environmental conditions and requirements, including thermal, electromagnetic
interference, power quality, radiation, and orbital debris.

Management interface

The Mission Manager serves as a single-point-of-contact representing the
ACCESS payload to the Shuttle and ISS programs, and to the various support
organizations involved in the integration, certification, testing, safety and operations of
the payload. This effort involves representing the payload organization at various Shuttle
and ISS program meetings and interfacing with various program and support personnel to
define, document, negotiate, and implement all payload requirements from the Shuttle or
ISS programs. The Mission Manager also assists the ACCESS payload community in
understanding the capabilities and limitations of the Shuttle and ISS accommodations.
The Mission Manager works with the Shuttle and ISS program to develop a program
schedule of milestones and deliverables. The Mission Manager is responsible for
providing guidance to the ACCESS payload community in meeting the required
milestones and deliverables per the agreed-to program schedule and for providing status
of progress as needed.

Payload consultation

The Mission Manager provides early design and operations consultation and
guidance to the ACCESS payload community to ensure compatibility between the
payload design and operations and the capabilities and requirements of the Shuttle and
ISS. This is necessary to eliminate or minimize the potential for physical, functional, or
safety incompatibilities between the payload and Shuttle or ISS. This function involves
providing detailed engineering design, testing, modeling, or analysis to assist the payload
in verifying compatibility. The Mission Manager also assists the ACCESS community in
configuring and packaging the payload into a cargo element capable of being analytically,
physically, and operationally integrated into the Shuttle and ISS systems.

Payload safety
The Mission Manager negotiates payload compliance with flight and ground
safety requirements. This effort begins early in the payload design process to incorporate

all applicable safety requirements before the design is complete to ensure significant
redesign effort and cost are not incurred. The Mission Management Organization
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(MMO) provides guidance to the ACCESS project to identify, and eliminate or control
hazards or potential hazards associated with the ACCESS payload. The MMO assumes
the lead role in developing all applicable flight and ground safety compliance
documentation. The MMO would be the payload representative to the Shuttle, ISS. and
Kennedy Space Center Safety Review Panels.

Payload integration requirements development

The Mission Manager provides guidance to the payload developers in the
development, documentation, and negotiation of payload requirements to be levied by the
Shuttle and ISS Programs. This process involves meetings, telecons and correspondence
with Shuttle and ISS Program personnel and associated technical experts. During this
process, the Mission Manager would act as the ACCESS payload representative to ensure
that all payload requirements are met.

Payload physical integration

The Mission Manager oversees the physical integration of the ACCESS payload
and all mission-particular integration and interface equipment into the Space Shuttle and
onto the ISS. The Mission Manager would not perform the function of experiment
integrator. Rather, the experiment integrator would be responsible to the ACCESS
Program Office for the integration of the various subassemblies of ACCESS into an
integrated payload. The integrated payload would include the Charge Module, the
Transition Radiation Detector, the Calorimeter, and the power, data thermal control, and
gas re-supply systems required for supporting the three main components. The MMO
would be involved in designing, building, testing, and certifying unique flight hardware
and ground support or ground handling equipment required to integrate the payload into
the Space Shuttle and ISS. This hardware includes payload thermal protection and
control systems, the Experiment Carrier Structure, and power, command and data
interfaces between the ACCESS payload and Space Shuttle or ISS.

The Mission Manager serves as the payload interface to Kennedy Space Center
personnel for all launch site support and operations. This function would involve
coordinating the definition, documentation, and implementation of all payload launch site
testing, integration, and launch operations. This effort would be completed through
standard PIP, PIP, Annex, PIA, and PIA Annex documentation and through various
Ground Operations Working Group (GOWG) meetings, as payload launch site
requirements and operations are developed.

Payload training coordination
The Mission Manager is responsible for training the astronaut crew and ground
support personnel on the ACCESS payload. A training plan will be developed and

implemented. ACCESS ground support personnel and the NASA flight crew will be
trained on the real time operation of the payload via simulations, both joint integrated
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simulations with the entire flight control team and internal stand-alone ACCESS
simulations.

Payload flight operations and mission support

The Mission Manager assists the ACCESS payload community in the
development, documentation and verification of all payload nominal, contingency, and
in-flight-maintenance procedures. The procedures are documented in the Shuttle and ISS
Flight Data Files for use by the Shuttle and ISS flight crews. These procedures would be
exercised by the responsible astronauts in crew training sessions and Joint Integrated
Simulations (JISs). The Mission Manager would coordinate and support all crew training
sessions and applicable JISs.

The Mission Manager also assists the ACCESS payload community in the set-up
of the ACCESS Payload Operations Control Center (POCC) to support real-time
operations. The Mission Manager would work with the ACCESS payload community
and the NASA program offices to arrange provision of required Shuttle and ISS data to
the ACCESS POCC. Real-time mission support of the ACCESS delivery flight to ISS
through deployment, installation, checkout, and operation verification, would be provided
by the Mission Manager in the JSC Mission Control Center (MCC). Real-time support
for the ISS on-orbit operations could also be provided by the Mission Manager for
ACCESS as required. Support for the ACCESS de-integration operations from ISS and
return flight on Shuttle would also be provided in the J SC MCC.

Payload post-flight support

The Mission Manager provides post-flight analysis and de-integration support for
the ACCESS payload. This support includes KSC operations support for post-flight de-
integration of the ACCESS payload and interface hardware from the Shuttle and de-
integration of and data retrieval from the payload. The Mission Manager also assists the
payload developers in shipping payload hardware and support equipment from KSC to
the payload developers’ home institutional facilities.

ACCESS accommodation schedule template

The attached ACCESS program schedule template that follows is a preliminary
draft of a top-level or major milestone schedule for the design, certification, and
integration (DC&I) of the ACCESS payload. This schedule assumes that the ACCESS
payload experiment integrator has already essentially completed the integration of the
three major components (Appendix B) into a complete single payload, including data and
power interfaces between components. At that point the Mission Management Office
support would design the interfaces and integration hardware required to mate the
payload with the Space Shuttle and the ISS. (See Integration, Verification, and Test,
Figure 38.) This schedule assumes a Shuttle launch to ISS in late 2006. The Mission
Management Office would require a thirty-six month schedule to complete all of the
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DC&I activities associated with the ACCESS payload. The Mission Management Office
can prepare a detailed schedule of all activities as the project progresses and the program
requirements are better defined (Implementation Phase, DDT&E). Additional schedules
will be required to address specifics of KSC pre-flight ground operations, real-time
mission support, the Shuttle retrieval flight, and KSC post-landing operations.
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ACCESS Conceptual Accommodation Schedule

Overview

The successful flight from launch through landing of the AMS precursor mission
(STS-91) in June, 1998 by the Johnson Space Center will provide the schedule templates
for the ACCESS Accommodation Study baseline. The assumption is that this process
will be repeated for the ACCESS payload. These templates are actuals, describing in
detail the specific process involved in the JSC design, certification, and integration
(DC&I) of the recent AMS payload targeted as the first major ISS science payload
following assembly completion (AC).

For the purposes of the ACCESS Accommodation Study, an October 1, 2006
launch is baselined. This date derives from the original AMS schedule for a three-year
stay at Site S3 UI, with a one-year extension in view of discussions that the AMS might
remain longer for additional data collection. The templates are generic and can be readily
shifted. For example, this could be an October 1, 2005 ACCESS launch date if AMS is
retrieved in three years as originally planned. Another example could be a shift of the
entire ISS schedule, or an ACCESS launch prior to AMS retrieval.

The schedule templates fall into three categories. They follow on the next 11
successive pages.

36-Month schedule

Under a baseline assumption that the science instrument has been defined® and can
keep pace with JSC DC&I master schedules, ACCESS can be launched in 36 months.
Save for the science instrument costs being defined under the instrument study®, this can
be accomplished at the cost given in the "Estimated Costs" section which follows in this
Report.

The four-page 36-month DC&I template which follows consists of a Work
Breakdown Structure (WBS) containing 42 elements. They range from design and safety
reviews (WBS 1-8) to mission integration plan (MIP, WBS 9-11, 15-17), and interface
control document (ICD, WBS 12-14) definition along with program reviews (WBS 18).
These are followed by the structural test article (STA, WBS 19, 28-29), the payload
support carrier and interface avionics design, fabrication, and test (WBS 20-22, 25-27,
30-31), delivery (WBS 32), and reporting (WBS 33). Then there are simulations (WBS
34-35), thermal blanket design (WBS 36), KSC testing and launch installation (WBS 37-
40), IVT (WBS 41), and launch (WBS 42). Subsequent to launch is the single-page
Mission Support Master Schedule.

60-Month schedule

For reference, a 60-month template (L-59) appears in the AMS schedule below.
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AMS templates
The AMS templates fall into two categories, providing explicit details:

« The DC&I Master Schedule (STS-91 through ISS launch) is first, comprising
the first three subsequent pages.

« The KSC schedule follows, representing the “off-line” and “on-line” integration
there. These comprise the second set of subsequent, three-page totals. “Off-line” (see
Appendix I) means the payload has been delivered to KSC but has not yet been turned
over to NASA. “On-line” means the payload is at KSC and has been turned over to
NASA.

o DC&I Master Schedule

The three-page DC&I master schedule template reflects the actual end-to-end JSC
turnkey process involved in the design and integration of a certified payload. The
example shown was the AMS illustrated in Figure 13. This STS-91 launch, originally set
for May 29, 1998, actually occurred on June 2, 1998 aboard Shuttle Orbiter “Discovery”
(OV-103) following a brief KSC delay unrelated to the payload. As one can see, the
template is less than 36 months (L-34).

The schedule illustrates how the science instrument and the accommodation
support structure each emerge, and then converge upon KSC for final integration as a
consolidated payload at the launch site. Final integration occurs along the conceptual
lines of Figure 38.

The KSC schedule for off-line and on-line activities shown at the bottom of the
master schedule is defined further in the KSC schedule.

* Off-line KSC Schedule

The off-line KSC schedule consists of a Schedule A and a Schedule B. Schedule
A covers the period from science instrument delivery to turnover to JSC at KSC.
Schedule B covers the subsequent period through turnover of the science instrument and
the accommodation support structure to KSC at the Multi-Payload Processing Facility
(MPPF). At the completion of the off-line KSC schedule, an integrated ACCESS
payload exists.

s On-line KSC Schedule

The on-line KSC schedule carries the newly-integrated ACCESS payload from
completion of off-line processing to the launch pad. This is followed by installation at
the launch pad, followed by Shuttle Orbiter IVT and end-to-end testing on the launch
pad. At this point, the ACCESS payload is ready for launch.
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Estimated Costs

Estimated Mission Management Costs

The estimated costs to NASA for the Mission Management accommodation
function are now presented. These include the design, fabrication, and certification of the
Experiment Carrier Structure, and the mechanical and functional integration of the ECS
with the ACCESS science components.

A summary of the Mission Management cost estimate is provided in Table 22
which follows in five (5) parts on the six subsequent pages (Pp 87-92). The cost estimate
is presented there in detail, along with the assumptions upon which the costs were
determined. Phase 1 for the ACCESS Accommodation Study is complete with this
Report. The phasing adopts NASA’s re-definition of phased procurement (PN 97-19, our
Note 1).

« Table 22 Cost by fiscal year

+ Table 22a Phase 1 Phase A/B Formulation (this Report)
* Table 22b Phase 2 Phase C/D Implementation

* Table 22¢ Phase 3 Phase E Deployment to ISS

* Table 22¢ Phase 4 Phase E On-orbit MO&DA

« Table 22d Phase 5 Retrieval Post-flight retrieval

This estimate does not include the costs to carry out the following, which are
assumed to be functions which will be performed by GSFC? and funded separately.

« DDT&E of the ACCESS science instrument.

» Electrical and avionics integration.

« Thermal design, analysis, and hardware development.

« Systems engineering and hardware development to integrate the
science components of ACCESS into an operational
instrument.

The costs that follow are based upon the known, actual support costs for the AMS
payload that JSC is currently responsible for. The ECS costs (Tables 4-8) are included.

The total Mission Management cost for the duration of the entire ACCESS
program in real-year (RY) dollars is $9.455M.

Ancillary Costs
The ACCESS Accommodation Study team determined that the Rocketdyne PCU
Box was an acceptable alternative for the TRD gas tank supply. An estimated total cost

of that portion for the instrument definition team® has been determined®. Cost details are
given in Table 19. The total TRD PCU tank system cost is estimated to be $710K.
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Table 22. ACCESS MISSION MANAGEMENT COSTS BY FISCAL YEAR ($K)

ACTIVITIES FYO03 | FY04 | FY0S | FY06 | FY07 | FY08 | FY09 | FY10 | FY1l | Total
Phase 2 - Experiment
Development and 224 308 275 239 1,046
Integration Support
Phase 3 - Deploy to 1,675 2,658 | 1,818 321 6,472
ISS Mission
Phase 4 - On-Orbit 303 317 328 341 89 | 1,378
ISS Support
Phase 5 - ACCESS 241 318 559
Retrieval Mission

224 | 1,983 | 2,933 | 2,057 624 317 328 582 407 | 9,455

Costs are escalated by 3% per annum, in real-year (RY) dollars.

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for

ACCESS Payload Development.

e GSFC performs DDT&E for the ACCESS science instrument.
e JSC performs DDT&E for ACCESS accommodations.

JSC-SM mentors the ACCESS principal investigators (PIs) and the instrument
developers on ISS, SSP, and KSC requirements, processes, and procedures.
e Phase ] - Accommodation Study (this Report). Phase 1 continues for the science

instrument®.

e Phase 2 - ACCESS Experiment Development and Integration Support.
Phase 3 - Deployment to ISS Mission, ACCESS using an ECS on STS-TBD in

October, 2006.

e Phase 4 - On-Orbit ISS MO&DA Support, ACCESS remains on ISS for four (4) years

of continuous operations.

e Phase 5 - ACCESS Retrieval Mission. ACCESS will be retrieved on STS-TBD in

October, 2010.

e GSFC performs electrical and avionics integration, thermal design, analysis,
integration, and systems engineering for the ACCESS instrument.
e JSC performs mechanical design, fabrication, testing, analysis, and integration for the

ECS.

e JSC-SM documents compatibility and negotiates compliance with ACCESS, ISS and

SSP requirements.

e JSC-SM designs, manufactures, tests, and certifies mission peculiar equipment
(MPE), unique POCC equipment, GSE, GHE, STE, and mock-ups needed to adapt

the experiment hardware to the Shuttle and ISS.

e JSC-SM develops structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the integrated

payload.
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GSFC develops structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the ACCESS
experiment hardware.

JSC-SM completes flight and ground safety and reliability analyses and reports for
the integrated payload.

JSC-SM develops inputs for the PIP, PIP Annexes, PIA, and PIA Annexes; supports
KSC integration activities; and provides on-orbit mission operations from the POCC
and CSR.

JSC-SM supports flight crew, POCC, and CSR training and simulations.

JSC-SM supports post mission de-integration and hardware recovery, facilitates
mission data annotation and distribution, and develops final mission reports for all
phases.

The estimate excludes costs for ISS, SSP, KSC, and other operation, test, and facility
Ccosts.

JSC facility costs for ECS structural verification testing are included in this estimate.
The estimate includes a 10% contingency.
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Table 22a. Phase 2 — Accommodation Development and Integration Support (3K)

ACTIVITIES FY03 | FY04 | FYOS | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 Total
1.0 Mission 74 100 90 75 339
Management
2.0 Integration 35 45 40 38 158
3.0 Engineering 80 110 100 85 375
Analysis
4.0 Operations 15 25 20 19 79
5.0 Contingency 20 28 25 22 95
Total Phase 2 Costs 224 308 275 239 0 0 0 0 0 1,046

Costs are escalated by 3% per annum, in real-year (RY) dollars.

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for Phase 2
-Accommodation Development and Integration Support.

e JSC-SM mentors the ACCESS principal investigators (PIs) and the instrument
developers on ISS, SSP, and KSC requirements, processes, and procedures.

e GSFC performs electrical and avionics integration, thermal design, analysis,
integration, and systems engineering for the experiment.

o JSC performs mechanical design, fabrication, testing, analysis, and integration for the
ECS.

¢ JSC-SM supports the experimenter’s programmatic reviews and meetings.

e JSC-SM documents compatibility and negotiates compliance with ACCESS, ISS, and
SSP requirements.

e JSC-SM develops structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the integrated
payload.

e GSFC develops structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the ACCESS
experiment hardware.

e JSC-SM completes safety and reliability analyses and reports for the integrated
payload.

e JSC-SM develops experiment operations scenarios, timelines, and analyses.
JSC-SM assists and reviews the experiment hardware design, manufacturer, and test.

e The estimate excludes costs for ISS, SSP, KSC, and other operations, tests, and
facilities.

JSC facility costs for ECS structural verification testing are included in this estimate.

e The estimate includes a 10% contingency.
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Table 22b. Phase 3 — Deployment to ISS Mission ($K)

ACTIVITIES FY03 | FY04 | FY05 | FY06 | FY07 | FY08 | FY09 | FY10 | FY11 | Total
1.0 Mission Management 300 353 400 103 1,156
2.0 Integration 775 | 1,320 498 78 2,671
3.0 Engineering Analysis 200 397 275 19 891
4.0 Operations 248 346 480 92 1,166
5.0 Contingency 152 242 165 29 588
Total Phase 3 Costs 0] 1,675 | 2,658 | 1,818 321 0 0 0| 6,472

Costs are escalated by 3% per annum, in real-year (RY) dollars.

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for Phase 3
- Deployment to ISS Mission.

ACCESS flies using an ECS on STS-TBD in October, 2006.

GSFC performs electrical and avionics integration, thermal design, analysis, and
integration, and systems engineering for the ACCESS instrument.

JSC performs mechanical design, fabrication, testing, analysis, and integration for the
ECS.

JSC-SM mentors the ACCESS principal investigators (PIs) and the experiment
developments on ISS, SSP, and KSC requirements, processes, and procedures.
JSC-SM documents compatibility of the ACCESS experiment hardware design with
ISS and SSP requirements.

JSC-SM supports payload, SSP, and ISS programmatic reviews and meetings.
JSC-SM designs, manufactures, test, and certifies mission peculiar equipment, unique
POCC equipment, GSE, GHE, STE, mock-ups, and training units needed to adapt the
ACCESS experiment hardware to the ECS and ISS.

JSC-SM develops structural math models and competes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the integrated
payload.

GSFC develops structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the ACCESS
experiment hardware.

JSC-SM completes flight and ground safety and reliability analyses and reports for
the integrated payload.

JSC-SM develops inputs for PIA and PIA Annexes; supports KSC integration
activities; and provides on Orbit mission support from the POCC and CSR.

JSC-SM supports flight crew, POCC, and CSR training and simulations.

JSC-SM supports EVA contingency crew training.

JSC-SM develops the final mission report.

The estimate excludes costs for SSP, KSC, and other operations, testing, and
facilities.

JSC facility costs for structural verification testing are included in this estimate.

The estimate includes a 10% contingency.
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Table 22¢. Phase 4 — On-orbit ISS Support (3K)

ACTIVITIES FYO03 | FY04 | FY05 | FY06 | FY07 | FYO8 | FY09 | FY10 | FY11 | Total

1.0 Mission Management 74 77 80 84 21 336
2.0 Integration 0 0 0 0 0 0
3.0 Engineering Analysis 0 0 0 0 0 0
4.0 Operations 201 211 214 224 60 910
5.0 Contingency 28 29 30 33 8 128
Total Phase 4 Costs 0 0 0 0 303 317 328 341 89| 1378

Costs are escalated by 3% per annum, in real-year (RY) dollars.

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for Phase 4
- On-orbit ISS Support.

ACCESS remains on ISS for four (4) years of continuous operations.
e GSFC performs electrical and avionics integration and systems engineering for the
ACCESS instrument.
e JSC performs mechanical design, fabrication, testing, analysis, and integration for the
ECS.
JSC-SM resolves on-orbit anomalies in real-time.
JSC-SM supports experiment and ISS programmatic reviews and meetings.
JSC-SM maintains MPE, GSE, GHE, and STE for the retrieval.
JSC-SM maintains unique POCC equipment.
JSC-SM facilitates annotation and distribution of mission data and reports.
The estimate excludes costs for SSP, KSC, and other operations, testing, and
facilities.
e The estimate includes a 10% contingency.
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Table 22d. Phase 5— ACCESS RETRIEVAL MISSION (8K)

ACTIVITIES FYO03 | FY04 | FYO05 | FY06 | FY07 | FY08 | FY09 | FY10 | FYI1 Total
1.0 Mission 123 181 304
Management
2.0 Integration 0 0 0
3.0 Engineering 9 14 23
Analysis
4.0 Operations 87 94 181
5.0 Contingency 22 29 51
Total Phase 5 Costs 0 0 0 0 0 0 0 241 318 559

Costs are escalated by 3% per annum, in real-year (RY) dollars.

Basis of the JSC Science Payloads Management Division (JSC-SM) estimate for Phase 5
- ACCESS Retrieval Mission.

e Retrieval will be on STS-TBD in October, 2010.

e GSFC performs electrical and avionics integration and systems engineering for the
ACCESS instrument.

e JSC performs mechanical design, fabrication, testing, analysis, and integration for the
ECS.

e JSC-SM mentors the ACCESS principal investigators (PIs) and the instrument
developers on ISS, SSP, and KSC requirements.

JSC-SM supports payload, SSP, and ISS programmatic reviews and meetings.
JSC-SM re-certifies mission peculiar equipment, GSE, GHE, mock-ups, and training
units needed to complete the retrieval.

e JSC-SM revises structural math models and completes structural, stress, fracture
dynamics, thermal, EMI/EMC and material analyses and reports for the integrated
payload.

e JSC-SM revises flight and ground safety and reliability analyses and reports for the
integrated payload.

e JSC-SM develops inputs for PIA and PIA Annexes; supports KSC integration
activities; and provides on-orbit mission support from the POCC and SCR.

e JSC-SM supports flight crew, POCC, and CSR training and simulations.

JSC-SM supports EVA contingency crew training.

e JSC-SM supports payload de-integration at KSC and hardware recovery; facilitates
data annotation and distribution and develops the final mission report.

e The estimate excludes costs for SSP, KSC and other JSC operations, test, and facility
costs.

o The estimate includes a 10% contingency.
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Conclusions and Future Effort

The attached payload sites on the ISS will provide a unique platform for
astrophysical observations of the cosmic rays from our Galaxy and the rest of the
Universe, using ACCESS. In the field of cosmic-ray science, this experimental concept
is a natural extension of several of the themes in NASA's Structure and Evolution of the
Universe (SEU) enterprise®. It also represents another step forward in the evolution of
our attempts to study the cosmic rays by taking advantage of improving technology and
the advent of a space-based outpost such as the ISS beyond our atmosphere and in Earth
orbit. It goes beyond the well-proven balloon experiments of short duration and limited
capabilities in a natural way, and it takes cosmic-ray science to the frontier of space
where such investigation belongs. Although there is nothing new in such a goal which
has been the objective of scientists in the field since its inception 87 years ago', bringing
the task to fruition is as important as it ever was.

At the completion of this baseline Accommodation Study and at this juncture in
the progress of cosmic-ray science, the next step appears to be the identification of an
ACCESS program strategy which is modest in cost and far-reaching in its consequences.
The basic idea is still as simple as Victor Hess climbing to the mountain top. Almost
anyone can do it. But can anyone do it inexpensively? How do we accomplish the goal
of a modest ACCESS program cost? As a preliminary Phase 1 summary, this report has
identified an initial estimate of certain portions of that cost, derived from actual numbers
and JSC flight experience for existing Shuttle and ISS payloads. It is likewise derived
from a number of rigorous assumptions, payload expertise, and qualified study team
personnel who have already made original contributions to the design and development of
both the STS and the ISS programs.

If such experience can serve as a paradigm, then what conclusions can we draw to
direct our future effort? Experience is not always a talisman for success. Nevertheless, it
does have merit and the following summary in Table 23 addresses several of the issues
that presently face the ACCESS program.

Table 23. Future efforts.

Identify a Phase 2 (DDT&E) program architecture.
- Complete definition of the ACCESS science mission.
- Define the end-to-end payload integration concept.
Identify the NASA Centers which support the architecture.
Implement the architecture.
« Be consistent with existing STS and ISS architecture.

As was stated in this Report, an ACCESS payload can be launched in 36 months
by JSC under its template at the cost given. However, this is only true if and when the
ACCESS science mission and instrument definition are mature enough to keep pace with
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that schedule. Such is not the case at the time of this writing in view of the fact that the
ACCESS science definition is still under studys. Nevertheless, for a launch in November
2006 the JSC template allows until November 2003 for the ACCESS science and
instrument definition to mature.

The second aspect of Table 23 which needs attention is the problem of heritage,
that experience is not always the talisman for success. The last bullet basically points out
that the evolution of NASA's space exploration programs into the current STS and ISS
era is one of human spaceflight. It is post-Challenger. It intimately is involved with
human presence and therefore human safety. That means multitudes of a new kind of
safety review. Older notions which derive from science payloads flown on unmanned
spacecraft or balloon flights can prove to be out-of-date and very expensive on an ISS
science mission. So these points of view need to change. The guiding principle of ISS
integration strategy adopted in the Accommodation Study is that final test and
verification happens at KSC and ultimately on-orbit in the space segment - not the ground
segment in a high-bay facility. As long as 30-year-old ideas about IV&T still plague us,
an ACCESS science mission may prove to be a very expensive thing. The KSC
integration concept has already been proven in NASA test flights. It works and presently
appears to be cost-effective, thorough, and adequate for ISS science missions. The
question for ACCESS then is how to arrive at a successful, cost-effective IV&T strategy
which is consistent with existing STS and ISS architecture.

With these parting thoughts on future effort, we complete the baseline ACCESS
Accommodation Study (Phase 1). All members and contributors of the baseline study
team look forward to the next exciting phases and future effort (Table 23 and Note 1) of
the ACCESS program.
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Notes

1Y)

Procurement Notice (PN) 97-19. Government regulations are now silent as to titles, definitions, or how many
phases can be used in phased procurement. PN 97-19 does switch from alphabetic to numeric designations.
The NASA FAR Supplement 1817.7300(b) simply defines “phase acquisition” as “an incremental acquisition
implementation comprised of several distinct phases where the realization of program/project objectives
requires a planned, sequential acquisition of each phase. The phases may be acquired separately, in
combination, or through a down-selection strategy.” Because PN 97-19 creates infinite possibilities for
confusion, the ACCESS Accommodation Study team has adopted the following definitions. These are not to be
confused with the safety review phasing in Table 19 of the main text of this report. For example, Phase 0 (zero)
cannot be used under PN 97-19 because it has a strong heritage in the NASA safety review process. Roman
numerals and Arabic numerals both use the same zero.

Previous Phasing Terminology Terminology - This Report
 Phase A/B » Phase ! (Formulation)
* Phase C/D (DDT&E) *» Phase 2 (Implementation)
» Phase E (MO&DA) » Phase 3 (Deployment to ISS)
» Phase E (MO&DA) * Phase 4 (On-orbit MO& DA).
e Phase E (MO&DA) o Phase 5 (Post-flight retrieval)
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Appendices

Appendix A. Historical background and scope of study

ACCESS began in 1996 as a new mission concept in NASA’s Office of Space
Science to perform fundamental cosmic-ray astrophysics investigations from the
International Space Station (ISS) using a hadron calorimeter. It was selected with the
proviso that a TRD (Transition Radiation Detection) module should be combined with
the proposed calorimeter so that the composite instrument would provide measurements
of the elements from H-Fe at the highest practical energies. In addition, the capability to
measure Ultra-Heavy (UH, Z>28) cosmic rays was to be included. This was a natural
merger of techniques and requirements since the separate modules complement one
another and each requires a large-area detector and long exposure time to make
significant measurements of the very rare ultra-high energy and UH cosmic-ray nuclel, as
described previously in this report.

An Accommodation Study was to be performed by the science team in
collaboration with the engineering team at the Johnson Space Center (JSC) to assess the
feasibility of flying ACCESS both in the Space Shuttle as transportation system, and on
the ISS. The JSC team completed such a study several years ago for the Alpha Magnetic
Spectrometer (AMS) experiment, and currently works with the AMS team that
successfully launched the AMS on its precursor flight (STS-91) in June, 1998. It was the
AMS that led to the ACCESS concept, and one of the questions in the study was the
degree to which ACCESS might utilize the expertise and, possibly, the hardware
developed for AMS in order to reduce cost.

A study team to define a preliminary model for the ACCESS instrument was
convened, involving Johnson Space Center, Louisiana State University (lead for the
calorimeter and the precursor balloon experiment ATIC), University of Chicago (lead for
the TRD and the balloon experiment TRACER), Washington University (lead for the UH
and the balloon experiment TIGER) and the collaborators on these projects plus other
members of the community (University of Maryland, NRL, University of Michigan,
Caltech, JPL, and Kanagawa University). This study team refined the science goals for
ACCESS, identified constraints and inter-operability, and defined a baseline instrument
concept to go forward into the detailed Accommodation Study. This stage of the process
was coordinated with the Cosmic Ray Roadmapping Committee which had been initiated
by NASA Headquarters.

In parallel, NASA Headquarters established a Project Formulation Office for
ACCESS at the Goddard Space Flight Center and initiated definition studies for alternate
instrumentation concepts and needed technology development. The two studies have
been coordinated with GSFC personnel participating in JSC Technical Interchange
Meetings and JSC personnel participating in the GSFC working group meetings.
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The science goals for ACCESS require maximizing the exposure to the rare ultra-
high energy particles and ultra-heavy nuclei. As the science team pointed out, achieving
a large detector area is important to mission success. Therefore, a second objective for
this study was to look into larger (and heavier) configurations. For study purposes, these
alternate configurations were derived by scaling the area and the weight and using these
to establish the appropriate envelopes and mass properties. In this part of the study, it
was necessary to consider a number of experiment carrier structure (ECS) options.

The most basic question that has been addressed in this study is "Can ACCESS be
accommodated on the ISS (and STS) within the currently known constraints,
requirements and attached payload site data for the Space Station?" The answer appears
to be "Yes", as explained above. At another level, this study was intended to (i) define
areas of major engineering concern and develop a plan to resolve the concerns, (ii)
provide a baseline engineering design (and cost estimate) for the accommodation work
that can be utilized in assessing mission viability and schedule constraints, (iii) develop a
management structure for interfacing between STS/ISS and the instrument developer, and
(iv) provide feedback and suggestions to the ACCESS science team, the ACCESS
Working Group (AWG), and the ACCESS instrument developer. All of these goals are
addressed within the main body of this Report.
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Appendix B. Detailed Instrument Descriptions
Summary

The ACCESS project derives from the greatly renewed interest in measurements of
cosmic ray composition and energy spectra, particularly measurements approaching the
“knee” region (Figure 1). The enthusiasm stems from the recent confluence of (1)
theoretical developments related to cosmic ray origin and acceleration; (2) exciting new
data indicating both different rigidity spectral indices for protons and heavier nuclei and
possible bend(s) in the proton spectrum; and (3) an opportunity to expose large
experimental payloads on the International Space Station (ISS).

As described previously, the ACCESS payload for ISS combines three instruments,
each of which is derived from a balloon flight prototype. Figure 3 showed the payload
schematically. At the bottom is the Hadron Calorimeter composed of a target/tracking
section followed by a Bismuth Germanate (BGO) energy detector. Above the calorimeter
is a Transition Radiation Detector (TRD) composed of fiber radiators and proportional
tubes to detect the transition radiation x-ray photons. And at the top is the Charge
Module (CM) designed to measure the rare Ultra-Heavy cosmic-ray nuclei. With the
addition of avionics, a thermal control system, gas re-supply, a debris shield, and a carrier
structure including the PAS interface, these three baseline instruments form the total
ACCESS payload as shown previously in Figure 21. In the following subsections, each
of the instruments is described in some detail.

B.1 The HADRON Calorimeter

Achieving the ACCESS science goals requires measurements of all of the elements
(H......Ni) to as high an energy as possible. This objective necessitates the combination of
the TRD and a Hadron Calorimeter (CAL). The science requirements are derived directly
from the mission goals, namely: (a) to combine CAL, TRD, and CM into one functional
instrument; and (b) to meet the GOAL measurement objectives'. The latter call for the
measurement of 10 events above 10" eV for each of the major charge groups: H, He,
CNO, Ne-S, Ar-Ni. For the CAL, the focus is on H and He since these two groups cannot
be measured by the TRD. [In addition, an objective is to cross-calibrate the CAL and
TRD techniques by measuring a sub-sample of high-Z events in both sub-instruments.]
The GOAL report* calls for an accumulated exposure in excess of: 300 m*-sr-days for H
and He and 600 m’-sr-days for the higher-Z nuclei. Since not all particles passing
through the CAL generate measureable events, the exposure necessary to meet the GOAL
objective must be increased by the interaction factor, IF. For IF = 63%, the required
minimum CAL exposure is 476 m*-sr-days. Thus, of necessity, the TRD must be at least
25% greater in collecting power than the CAL.

A diagram of the baseline Hadron Calorimeter is shown in Figure B.1-1. This

instrument may be divided functionally into two parts: the top "target/tracking" section
measures the incident particle's charge and trajectory, provides a first level trigger, and
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Figure B.1-1. The baseline Hadron Calorimeter for ACCESS.

causes the particle to interact inelastically; the lower, "BGO" section measures the energy
of the ensuing cascade of particles. The highly segmented Silicon matrix detector (Si)
measures the incident particle charge in the presence of background generated by
backscatter from the shower. The Carbon target layers (T1, T2, T3, T4) are each 10 cm
thick and together provide ~one interaction length to cause incident particles to interact
without substantially developing a shower. The active calorimeter consists of twelve
layers of BGO crystals each of which has dimensions 2.5 cm by 2.5 cm by 100 cm long.
The twelve layers provide > 26 radiation lengths for the shower development and
alternate layers are mounted at right angles so that the trajectory of the shower core can
be determined. Scintillator hodoscopes (S1, S2, S3) between layers of target material
provide the event trigger, and honeycomb structure (P1-P5) provides support for the
detectors/materials.

The full device has an area of 1 m” and a height of 0.8 m, resulting in a geometrical
factor of < 0.8 m? steradian. Taking into account a ~63% interaction rate in the target and
assuming a 1000 day exposure on-board the ISS the effective collecting power of the
CAL is 500 m*-sr-days. We have also considered designs in which the target/tracking
section is expanded at the top into a cone shape and the BGO is reduced in area to
maintain the same weight. Such an arrangement (c.f. Figures 3, 17, and B.4-1, or
Appendix E) accepts particles at larger zenith angles which can yield an increase in
collecting power.

The instrument requirements for the CAL necessitate that it must: (a) force the
particles to interact, (b) measure the charge of each incident event, (c) determine the
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trajectory through the instrument and (d) measure a signal proportional to the total energy
of the incident particle. These requirements, and the ensuing instrument design, are
explained in more detail below.

B.1.1. Ionization Calorimetry: Target and BGO

At the ultra-high energies to be studied by ACCESS, the practical method to
measure H and He, and other elements, in the cosmic rays is ionization calorimetry. In
an ionization calorimeter, a particle’s energy is deposited inside a medium via a cascade
of nuclear and electromagnetic particles. At each step of the cascade, the energy of the
primary particle is sub-divided among many secondary particles. The integral of the
deposited energy versus depth is a measure of the energy of the incident hadron. In
principle, a device that is tens of interaction lengths deep will provide energy resolution
limited only by the statistical nature of the cascade process and the measuring technique.
Such "thick" calorimeters are possible for ground-based experiments, but instruments for
space applications are necessarily "thin". In this case, the calorimeter resolution depends,
as well, on the fluctuations in the energy transferred to secondary particles in the first few
interactions. Thus, an optimal calorimeter would have a target as thick as possible in
interaction lengths, to force interactions of both the incoming primary and secondary
hadrons, while remaining thin in terms of radiation lengths, so the cascade development
occurs not in the target but in the calorimeter material. The calorimeter material should
be thick in terms of both radiation length, to absorb the cascades, and interaction length,
to force additional interactions of both secondary and primary particles. The energy
resolution improves as the calorimeter is made deeper because additional interactions
occur, which results in a larger portion of the incident energy appearing in the
electromagnetic component. Finally, if the calorimeter is sensitive over its full volume, it
will observe the total deposited energy. From Monte Carlo simulations and detailed
investigations using accelerators, there is a good understanding of how the energy
resolution depends on depth, materials, particle species, and primary energy’”>.

Practical instruments for balloon or space applications must necessarily be limited
in absorber thickness in order to have a reasonable cross-sectional area, i.e. geometrical
factor, for collecting the particles. The minimum depth depends on the energy resolution
acceptable for a particular experiment. A thin CAL to measure the spectra of galactic
cosmic rays must meet two basic requirements: (1) the primary nucleus must undergo at
least one inelastic interaction; and (2) the electromagnetic energy resulting from the
interaction(s) must be measured with good resolution. An optimal design would have a
target thickness of about one proton interaction length located upstream of an
electromagnetic calorimeter, which must be sufficiently thick in radiation lengths to
develop the photon cascades ensuing from the neutral pions produced in the interactions.

Considering these requirements, a nearly ideal target material is Carbon since this
element has 2.02 radiation lengths per proton interaction length (38 cm at a density of
2.265 g cm™) and is readily available. For the calorimeter material, Bismuth Germanate
(BGO) is also nearly ideal with a radiation length equal to 1.12 cm, with a density of 7.1
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g cm™ and about 20 radiation lengths per interaction length. BGO is an inert, non-
hygroscopic scintillation crystal which has no tendency to cleave or shatter and 1s
radiation resistant. It is widely used in accelerator experiments and is appropriate for
exposure on the Space Station. The other advantage of BGO is that it is a scintillator and,
thus, the calorimeter can be made fully active, thereby avoiding transition effects. For
these reasons the ACCESS calorimeter adopted for the baseline study uses Carbon as the
target and the ionization measurement is made by BGO crystals.
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Figure B.1-2. Monte-Carlo calculated Integral Cascade curves for a C-BGO instrument.

The anticipated integral cascade curves, i.e. the mean energy deposited as a function
of increasing BGO thickness, for an ACCESS type CAL is illustrated in Figure B.1-2 for
protons at 10, 100, 10°, 10* and 10° GeV incident vertically on the top of the target
section. These results were generated with the GEANT Monte-Carlo code for a 25 cm
thick stack of BGO. The mean energy deposition for protons is about 30 - 40% of the
incident energy, and is almost linear with the incident energy. The energy resolution (the
ratio of the standard deviation of the energy deposit distribution to the mean energy
deposit) varies from 30 to 40% below 10 TeV, but it degrades to about 60% at 100 TeV.
This is due to the limited thickness of the BGO in these calculations. For ACCESS, the
BGO will be at least 30 cm in depth, sufficient to achieve resolution of <50% at all
energies. For heavier nuclei, the situation improves with increasing charge. For Helium,
the calculated resolution is 30-40% while for Fe it is 10-20% *.
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B.1.2. Charge, Backscatter and Tracking

In a calorimeter experiment, there are particles backscattered from the calorimeter
into the upper hemisphere”’. These albedo particles consist mostly of relativistic (several
MeV) electrons that result from gamma rays scattered into the backward hemisphere of
the calorimeter. They also include non-relativistic particles, which may result either
directly from nuclear interaction products emitted into the backward hemisphere or from
albedo neutrons produced in the interactions. Simulations confirm that as the energy
increases, the number of backscattered particles per unit area increases, potentially adding
to the charge signal of the incident cosmic ray and degrading the charge resolution,
including distinguishing Z=1 and Z=2. In fact, it is rather widely accepted that
backsplash from the calorimeter was responsible for confusing protons and helium,
leading to a claimed spectral break in previous experiments™”. The magnitude and
energy dependence of this albedo becomes smaller with an increase in the distance and
the amount of matter between the point of the first interaction and the charge detector.
For example, when the first interaction occurs deeper in the target the average back
scatter signal in the charge layers is much smaller than when the first interaction occurs
near the top of the target.

In the baseline CAL of Figure B.1-1, the top most layers are a Si detector followed
by a scintillator layer (S1). S1 is formed from two layers of 2 cm wide, 1 cm thick
scintillator strips, arranged orthogonally to provide both an x- and a y-measurement, as
well as a fast trigger signal. Based upon simulations of the backscatter, the 2 cm wide
strips become inefficient at separating Z=1,2 at about 10 TeV, due to the presence,
somewhere along the strips, of several albedo particles. To provide reliable charge ID at
high energy, a detector with two-dimensional segmentation is needed. This is provided
by the Si detector which is a matrix of small individual detectors constructed so as to
cover the full aperture of the instrument. Simulations show that with this pixelation, the
fraction of mis-identified protons remains at the few percent level. For ACCESS, we
plan on pixels about 2 cm x 2 cm or smaller, which, combined with the strip scintillators
and tracking information, should eliminate the backscatter ambiguity.

The Si-matrix also provides excellent charge resolution up to Ni to compensate for
the saturation in the scintillator at high charges. In the case of a bare calorimeter
instrument, the Si + S1 will provide the identity of the incident cosmic ray. In the
ACCESS configuration, however, the particles observed at the top of the CAL must first
penetrate the TRD and CM instruments. The mass in these instruments guarantees that
some of the events will interact before reaching the CAL, fragmenting in the case of
heavy ions, plus interacting and beginning to develop a cascade. For these events, it is
vital that the incident particle's charge be determined at the top, in the charge module, and
that its position of incidence or trajectory be known, to compare to the data from the CAL
instrument.

Particle tracking is required to correct for the angle of incidence effect in the
cascade curves and in the charge detectors. In addition, the use of pixelated detectors
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requires tracking to point to the pixel containing the incident particle. The shower
develops along the particle's trajectory, so determining the shower axis is equivalent to
measuring the trajectory. In the ACCESS design of Figure B.1-1, every alternate BGO
layer is oriented perpendicular to the adjacent layers providing twelve measurements of
the shower core. Analyzing the distribution of energy deposition across a single layer
determines the centroid of the shower. Fitting these centroids determines the shower
axis. In addition, there are two additional scintillator layers (S2 and S3) in the middle
and at the bottom of the target/tracking section and each of these, like S1, are composed
of an x-y pair of planes of scintillator strips. Signals are read from both ends of the strips
providing a redundancy in determining the location of a particle's path or the axis of a
developing shower. Combining the BGO, scintillators and Si-matrix provides the
information to be compared to the data available from the TRD and Charge Module. For
events that enter at an angle and do not traverse the CM or the full TRD, the CAL has the
ability to measure the charge, energy and trajectory of the event.

It should be noted here that the scintillators (S1, S2 and S3) provide the first level
trigger for the CAL. This coincidence determines the geometrical acceptance of the
instrument. If a particle does not interact and generate a cascade, the BGO would not
provide the second level shower trigger and the event would be discarded.

A refinement to the CAL concept, not included in the baseline, is the addition of
layers of scintillating fibers, e.g. 1-2 mm square fibers, which would provide even finer
resolution of the shower core and thereby improve the trajectory resolution. Such an
addition will be considered later, as the ACCESS project is developed further.

B.1.3. Detector Readout Electronics

There are a large number of channels to be read from the CAL, particularly when
the large dynamic range is considered. Fora 1 m x 1 m CAL, each of the scintillator
layers consists of 100 strips, 50 in the x and 50 in the y direction. Each strip is readout
with a photomultiplier tube (pmt) on each end. To cover the dynamic range from Z=1 to
Z=28, two dynodes from each pmt must be pulse height analyzed. This gives 400
channels of information per scintillator layer and 1200 channels in total for S1, S2 and
S3. In addition, the 600 anode signals are utilized to form the first level trigger to select
events within the instrument acceptance.

For the Si-matrix, assuming each pixel is 2 cm x 2 cm (the exact size of a pixel may
be less than this), there will be about 3200 separate detector units when the necessary
overlap is taken into account. Each of these must be readout and then interrogated to
determine which ones contain a signal to be pulse height analyzed. To cover the dynamic
range from Hydrogen to Nickel, each pixel must be analyzed in two separate gain ranges,
giving a total of 6400 channels.
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The baseline BGO stack contains twelve layers each of which has 40 crystals, each
2.5cm x 2.5 cm x 100 cm crystals. These are readout on both sides via photodiode
detectors. a sketch of which is shown in Figure B.1-3. The dynamic range extends from
the energy deposit of several minimum ionizing particles to the maximum energy deposit
that could occur in the center of the cascade due to the highest energy particle to be
measured. This latter value has been determined from simulations, with the result that
the dynamic range exceeds a factor of 10°. This can only be handled by multiple readout
channels, and Figure B.1-3 shows three separate photodiodes attached to one side of one
crystal. This implies 240 channels per BGO layer and a total of 2880 channels for the full
calorimeter. An alternative design, depending upon procurement limitations and
mechanical packaging considerations, divides each crystal into two pieces, i.e. two 2.5
cm x 2.5 cm x 50 cm crystals, mounted adjacent to each other with support structure in
the center. Each crystal is still readout with three photodiodes, so that the number of
channels remains unchanged.

There is, however, some remaining ambiguity in these estimates since the final size
of the calorimeter depends upon the total mass available to the CAL instrument. This
mass varies depending upon the size and mass of the other two instruments and the
estimated weight for the structure, avionics, radiators, etc. For example, in a lighter
configuration, the CAL is reduced to 0.9 m x 0.9 m which decreases the number of
scintillator and BGO channels to 1080 and 2592, respectively. Similar scaling applies to
the Si-matrix.

Figure B.1-3. Schematic representation of the readout of one side of a BGO crystal.

The overall CAL requires handling ~10° channels of information which, in turn,
requires the use of Application Specific Integrated Circuits (ASIC) to minimize the power
consumption and the weight of the electronics. The use of ASICs then entails relatively
sophisticated control logic and digital data handling. A schematic diagram of the readout
system electronics is shown in Figure B.1-4. Beginning at the right side with the active
detectors plus their photomultiplier tube or photodiode readout, the chains proceed to the
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left to the Data Control Unit (DCU) which provides the event data for the instrument
readout/ACCESS data interface unit to the ISS. The ASICs are contained in the blocks
labeled FEMs (Front End Modules) which take the analog signals from the detectors and
convert them to digital data. The ACLBs (ASIC Control Logic Board) provide all of the
set-up, clock timing, and other signals required to operate the ASICs and pass the digital
information to the Digital Interface Module (DIM). The DIM/ACLB also passes
command and control information to the FEMs. The division between functions in
Figure B.1-4 indicates physical location as well. The FEMs must be physically close to
the photodetector readout devices, while the ACLBs and DIMs, can be mounted
elsewhere and cabled to the FEMs. Note that one ACLB can service a number of FEMs;
and, likewise, one DIM can handle multiple ACLBs.
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Figure B.1-4. Readout electronics for the CAL detector subsystems.

The readout of an event is inherently asynchronous, started by the arrival of a
cosmic-ray particle. This is controlled by the trigger logic module which also provides
overall normalization through the use of rate counters. The trigger must start the readout
based upon the first level trigger derived from the scintillator signals. The somewhat
slower BGO signals are used to determine the size of the shower which then classifies the
event. For low priority classes (e.g. low energy) only a small fraction will be transmitted
to the DCU. The rest will be counted by the rate counters, but the readout will be
terminated and the FEMs reset to await another cosmic ray. This reduces the data volume
coming from the CAL and minimizes the deadtime of the instrument.

There are at least two separate types of ASICs involved in the readout. Based on
the experience with the balloon prototype, ATIC, one ASIC should be able to handle the
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scintillators and BGO readouts while a second type of ASIC will be required for the Si-
matrix detector. (The corresponding ACLB's will, of necessity, differ as well.)

In ATIC, the ASIC for the silicon pixels is a new derivative of a chip originally
developed for DESY called Amplex*™®'. There is a whole family of Amplex derivatives
used in high-energy physics. The one ATIC is developing is called CR1 4. This ASIC
has 16 channels, each containing a charge integrating preamplifier, a shaper, a hold
circuit and a discriminator. Each channel is multiplexed to an output buffer/driver. The
gain of the output buffer can be switched from 1X to 10X. The dynamic range covers
1400 Mips (minimum ionizing particles in silicon). Except for the discriminator and the
hold circuit, this chip is analog; the output is a voltage level corresponding to the input
charge of the selected channel. The conversion gain is about SmV/Mip for the 1X buffer
setting. An external ADC is required to switch each channel and digitize the signal.

The ASIC used in ATIC for the scintillators and BGO is a non-rad-hard version of a
16 channel chip developed for the ACE (Advanced Composition Explorer) mission®*®’.
Each channel contains a charge integrating preamplifier, a switched capacitor array (3
caps), a difference amplifier and a Wilkinson-type run down/up ADC. In addition, each
channel has a pickoff at the output of the preamp with a shaper and two discriminators.
Each set of discriminators is OR'd for all 16 channels, giving effectively two
discriminated output signals for the entire chip.

In "waiting-for-event mode,” two capacitors of the array are switched into and out
of the preamp output basically, switching one in while the other is out, (called ping-
pong). The third cap is continuously switched in at that time. An external trigger stops
the ping-pong and switches the third cap from the preamp into holding mode. To digitize
the signal, cap 3 and the cap which was switched off the preamp the longest time before
the trigger occurred are switched to the two inputs of the difference amplifier. A constant
current source begins to discharge cap 3 and a run down/up counter is started. Each
channel individually stops the rundown/up once the difference amplifier reaches zero.
The overall rundown/up is stopped after the maximum count of 4096 (12 bit) is reached.
The ADC values are serially clocked out to the control circuit, the ACLB. The ping-pong
is resumed and the process starts over, waiting for a new trigger.

B.1.4. Data Rate

The data rate from the CAL is controlled by the threshold selected for full pulse
height analysis. For a threshold at 5 x 10" eV (0.5 TeV), there will be, on average, 0.26
events per second. We assume that the instrument data system will perform sparsification
(eliminating channels with no or low signal(s) resulting in an average event reading out 5
strips per scintillator hodoscope layer, 4 BGO units per calorimeter layer and 100 silicon
pixels. Each Si pixel requires an address plus two 10-bit ADC (analog to digital
converter) values; each scintillator readout involves an address plus two 12-bit ADC:s;
and each BGO readout requires an address plus three 12-bit ADC values. This gives
8752 bits per event and 2.3 kbps for the average event-generated data rate.
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To this must be added (a) rate counter readout, (b) calibration data, and (c)
housekeeping data. Assuming 64 rate counters, each of 24 bits, read every 10 seconds.
the rate counter data rate is 0.2 kbps. We plan to incorporate an on-board calibration
mode (pulsers) which will monitor the performance of the detectors and the electronic
readout systems. Assuming a calibration "run” exercises all of the channels, there will be
a high rate of 317 kbits. However, a calibration "run" will be needed, at most, every 10
minutes, giving an average calibration data rate of 0.5 kbps.

The Housekeeping System to be developed for ACCESS will monitor voltages,
currents, temperatures and the like at various locations in the instrument and for each of
the major subsystems. Periodically this data will be formatted and transferred to the data
system for downlink. We estimate a volume of 3 kbits read every 5 minutes for an
average data rate of 0.01 kbps.

Combining these three sources of data together, the average raw data rate from the
CAL will be very modest, just over 3 kbps. This data will need to be formatted for
transmission to the ISS and we are assuming use of CCSDS encoding. We assume that
housekeeping data is transmitted frequently via the ISS 1553B link. The event and
calibration data may need to be buffered for infrequent transmission via the fiber optic
link. Each of these requires some overhead. Allowing a 33% margin for overhead and
growth, the CAL is not expected to average more than 4 kbps.

B.1.5. Power Consumption

The total power required for the CAL instrument is composed of a number of parts,
not all of which are fully specified at this time. In particular, the power involves (a)
instrument operation, (b) data handling, (c) voltage conversion and (d) thermal control
(heaters). Several of these require further definition of the overall payload and its
subsystems before accurate estimates can be assigned.

The power for instrument operation is perhaps the best known, but still depends
upon the actual power consumption of the ASIC chips to be developed for the ACCESS
program and assumptions about the needed ACLB. Based upon the balloon prototype,
we assume ASICs can easily be developed with power consumption of 2 mW/channel for
the Si-matrix and 10 mW/channel for the scintillators and BGO readouts. Further, we
assume 8 watts for ACLB to handle these ASICs (but this is only a first estimate).
Combining these with detector bias, ADCs, and DIMs we obtained the following
estimates:

Silicon-matrix - 27 watts
Scintillators - 32 watts
BGO stack - 36 watts

for a total detector power of 95 watts. (The uncertainty here may be a factor of two
depending upon the ASIC, the complexity of the FEMs and ACLBs, and the actual layout
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of the flight systems.) To this must be added the power needed for the DCU, the
Housekeeping system, the control systems, trigger logic and rate counters, and the
calibration system (pulsers and controls). The estimates here are also uncertain but a
minimum requirement is 25-30 watts. This gives a total instrument operating power of
120-125 watts as a minimum (with ~200 watts as the worst case).

The extent of the data system required by the CAL depends upon the capabilities of
the avionics that interface with the ISS data systems. This remains undefined, so that the
CAL may require a data system which can range from a simple buffer to a sophisticated
large scale memory and processing unit. Power consumption may range from 10-30
watts depending upon the complexity of the system.

This total of 130-155 watts is actual power being consumed at the appropriate
voltages. These voltages include ~1 kV for the photomultiplier tubes, ~100 V for the Si
and photodiode bias, and +5, 7.5, 12 and 15 V for the electronics. Beginning with a 28
V power system (such as is used in the balloon payload) an average conversion efficiency
utilizing commercial DC-to-DC converters is about 65%. This implies the need for 200-
240 watts of input power at 28 volts.

The ISS, however, provides power at 120 VDC, nominal, to the attached payloads.
Converting this to 28 VDC involves another loss due to conversion efficiency. If suchis
to be done within the CAL instrument, the raw power input to the CAL increases by 20-
25%.

Finally, there is the question of thermal control. Almost certainly some heaters will
be required to minimize gradients and to maintain the instrument temperature.
Depending upon the thermal control system (TCS) capabilities, this heater power can
range from 10 watts to as high as 100 watts. Specifying the TCS, and determining the
level of heater power required, is one of the high priority tasks for ACCESS.

B.1.6. Thermal Considerations

The CAL instrument requires a relatively constant temperature with minimal
thermal gradients throughout the BGO. This is because the light output from BGO is
temperature dependent. We are planning to monitor the temperature continuously, but do
not believe it is desirable to correct every event for a different temperature. Therefore,
we are baselining a temperature variation of:

< 1-2 °C per orbit
< 2-3 °C per 45-50 day period
< 5 °C per year

where these apply specifically to the BGO volume.

110



The desired operating temperature for the CAL is ~10 °C, with a desired range of 0-
20 °C. The full operating range limits are:

Min. (°C) Max. (°C)

Silicon Matrix -25 +30
Hodoscopes -25 +30
Calorimeter -10 +30
DCU -5 +40
Instr. Control Elec. -20 +50

The operating temperature gradients should be:

Si-matrix < 2 °C across the detector
Scintillators <5°C " nooon
BGO < 2 °C " " "

Finally, the survival temperature ranges have been estimated to be:

Min. (°C) Max. (°C)

Silicon Matrix -40 +40
Hodoscopes -40 +50
Calorimeter -40 +50
DCU -45 +75
Instr. Control Elec. -55 +85

The above are the initial estimates to be used in the early planning and development
process. These will be refined as additional design work is performed and the hardware
is developed.

B.1.7. Science Results

The number of events to be observed by ACCESS have been estimated from fits to
the available data above 50 GeV/nucleon. The proton differential energy spectrum at
high energy is proportional to E*” while the Helium spectrum is flatter, proportional to
E2%_ For heavier nuclei, (C, O....) we have assumed an energy dependence identical to
Helium (i.e. E2%) scaled by the relative abundance of the species relative to Helium.

Table B.1-1 gives the results for six different elements above four total energy
thresholds for the CAL, assuming 1000 days of full exposure.

Recent results from the JACEE measurements'’ indicate slightly larger spectral
indices, -2.80 + 0.04 for H and -2.68+0.04, -0.06 for He. The indices assumed above are
within the quoted uncertainties on these new measurements, but the steeper spectra would
reduce, slightly, the predicted number of events. Moreover, JACEE has reported® harder
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TABLE B.1-1. INTEGRAL COUNTS FOR CONTINUOUS SPECTRA

>50 TeV > 100 TeV > 500 TeV > 1000 TeV
H 1487 442 26.4 7.9
He 1357 429 29.7 9.4
C 267 85 5.8 1.9
O 388 123 8.5 2.7
Si 148 47 3.2 1.0
Fe 279 88 6.1 1.9

spectra for C-O and Ne-S than utilized in the above calculations. Such spectra would
increase the predicted number of events in Table B.1-1 for nuclei heavier than Helium.
Finally, the Cosmic Ray Nuclei experiment’"* on Spacelab-2 observed a smaller number
of Silicon at the highest energies, yielding a steep Si spectrum. This spectrum would
reduce the expected number of Silicon events compared to the numbers in Table B.1-1.
ACCESS will resolve many of these questions about the heavy element spectra.

Of interest for ACCESS is the limit of the SNR acceleration process. In the
simplest model, the accelerator is predicted to “turn-off” at Z x 10" eV. Thus, we expect
a ‘break’ in the power law energy spectrum at about this energy. We have modified the
calculations presented above to include a steepening in the spectrum by 0.3 at Z x 100
TeV (e.g. the proton spectrum becomes E*% above 100 TeV). The expected numbers of

events in this case are presented in Table B.1-2 for the same energy ranges as Table B.1-
1.

TABLE B.1-2. INTEGRAL COUNTS INCLUDING SPECTRAL BREAKS

>50 TeV >100 TeV > 500 TeV > 1000 TeV
H 1421 377 13.9 3.4
He 1336 409 19.1 4.9
C 267 84 5.2 1.3
) 387 122 7.9 2.1
Si 148 47 3.1 0.9
Fe 279 88 6.0 1.9

Note that the effects of the predicted spectral steepening are observed in the H and
He event numbers at the highest energies, > 500 TeV, with a smaller effect for those
> 100 TeV. For C and O, such a ‘break’ can just barely be observed at > 1000 TeV, and
it will require the larger event statistics from the TRD at energies > 50 TeV/nucleon to
establish such a spectral change. For still heavier nuclei, the assumed ‘break’ occurs at
such a high energy that it will be difficult to observe.

Figure B.1-5 shows the anticipated results for H and He for the two cases presented
in the tables. Plotted is the flux that would be measured by the CAL multiplied by E*’
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and compared to a compilation of previous results. The solid squares show the effect of
the spectral “break” when compared to the open squares, which represent continuous
spectra. Achieving good statistical precision at the highest energies is clearly necessary,
and this is the goal for ACCESS on the ISS.
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Figure B.1-5. H and He results (large squares) estimated for a 1000-day
ACCESS Mission compared with previous data. The error bars are statistical
uncertainty only and the flux values are multiplied by E*’. The open squares

assume no break in the spectrum, while the filled squares assume that the

spectral index steepens by 0.3 at a total energy of Z x 100 TeV.

B.2. The Charge Identification Module (ZIM)

(The following description of the Z (Charge) Identification Module (ZIM) for
ACCESS is adapted from a preliminary instrument description® prepared by the
University of Washington instrument team in support of the two ACCESS program
studies”®, as members of the Accommodation Study team’ and the science instrument
definition team®. It has been shortened to fit the format of Appendix B for this Report.)

B.2.1 Instrument concept
The ZIM has as its primary objective the measurement of the cosmic-ray
abundance of every individual element in the interval 26 Z 83 with accurate element

resolution and with sufficient collection power to give excellent statistical significance.
This instrument will, for the first time, determine the full element-by-element
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composition of cosmic rays, throughout the heavy two-thirds of the periodic table. This
will provide data for definitive tests of theories regarding sites and mechanisms for
cosmic-ray acceleration. In addition to unambiguous determination of Z, the system will
also define the energy E of the cosmic rays in the interval of approximately 0.3 E 20
GeV/nucleon. Finally, the detectors will measure the actinide elements, ., Th and ,,U,
although limitations on the size of ACCESS will limit the statistical significance of these
data.

The complement of detectors included in ZIM will also resolve individual charges
in the intervall0 Z 26. In this region, the instrument can determine energies up to at
least 10 and possibly 100 GeV/nucleon, which will complement the higher-energy data
from the Transition Radiation Detector (TRD) described in Appendix B.3.

The UH configuration is also expected to serve as the Charge Module for the full
ACCESS instrument. The dynamic range of the silicon detectors should permit
measurements down to Z=1. These detectors should also serve the entire Z-range of
high-energy measurement and thus provide complementary measurements to the
ACCESS Calorimeter (Appendix B.1) and TRD modules.

B.2.1.1 Designdrivers

There are a number of detector qualities that drive the design of the detector. This
includes minimizing the weight, power, and bit rate without compromising experiment
objectives. Other items that are important in the instrument design are:

1) Minimize material traversed by the cosmic rays. This will minimize the number of
nuclear interactions which increases the number of good particles that we can collect
while reducing the number of interacted particles which must be effectively rejected
in the data analysis.

2) The material in the beam must be as uniform as possible. Non-uniform materials
result in the creation of differing amounts of knock-on electrons for particles
traversing different locations within the detector. This results in variations of signal
from the detectors and reduces the charge resolution that can be obtained.

3) The radiator or detector active area must be maximized, to maximize the number of
particles that can be collected.

4) There are two light-collection boxes. These should have the maximum surface area

possible covered by PMT photocathodes to optimize light collection. That is, as
many 5-inch tubes as possible should ring each of the light-collection boxes.
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5) The silicon detectors will probably be pixelated, which will give the capability to
detect and identify Z=1 nuclei. In addition, if a detector starts drawing a large
leakage current, it usually would limit the detector loss to a single pixel.

Silicon dE/dx Aerogel Cherenkov
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Figure B.2-1. ZIM instrument cross-sectional view. The fiber outputs
(triangular regions) and MAPMT readouts are shown only on the left half of
the instrument for clarity.

B.2.1.2 Overall instrument description

The instrument under study utilizes silicon dE/dx detector arrays, two Cerenkov
counters with radiators of different refractive index to measure velocity, and a

SILICON 1 TOP HODOSCOPE 2Mx 2M
SILICON 2

AREOGEL CHERENKOV
LIGHT BOX 48 -Sin PMT’s

SILICON3

SILICON 4

PILOT CHERENKOV
LIGHY BOX 48 -5in PMT’s

BOTTOM HODOSCOPE 2Mx M

Figure B.2-2. A three-dimensional view of the ZIM instrument.
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scintillating fiber hodoscope for trajectory determination. Figure B.2-1 shows a cross-
sectional drawing of the baseline instrument. The overall dimensions of the detector are
2.5 meters square by 0.5 meters deep. This instrument provides a useful radiator area of

AREOGEL CHERENKOV
Silicon 1 TOP HODOSCOPE 2Mx2M LIGHT BOX 48-5in PMT s
11 {s1)}]

Silicon 2 =——p.

Silicon 3——» Honeycomb

Honeycomb
Silicon 4

BOTTOM HODOSCOPE 2Mx2M PILOT CHERENKOV
LIGHT BOX 48-5in PMT,S

ZiN) EXPLODED VIEW

Figure B.2-3. An exploded three-dimensional view of Figure B.2-2 above.

~206 cm square and a total geometry factor for entry in one direction of 8.7 m’sr. The
fiber outputs are only shown for the left half of the instrument so that the other detectors
can be seen. Figures B.2-2 and B.2-3 illustrate an exploded three-dimensional view.

Going from top to bottom, the order of the detectors is as follows:

Silicon detector layer 1

Silicon detector layer 2

Top fiber hodoscope (layers x and y)
Aerogel Cherenkov counter

Acrylic Cherenkov counter

Silicon detector layer 3

Silicon detector layer 4

Bottom fiber hodoscope (layers x and y).

XN R

B.2. 1.3 Basic mechanical structure

Figure B.2-4 depicts the Cerenkov light box sidewall construction. In the current
concept the sidewall is fabricated out of aluminum. The structure is hogged out of the
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aluminum and has the dimensions shown in the drawing. In this drawing the side walls
for the two light boxes are shown as an integral unit. The weight of this wall is 22.2
pounds. It is more likely, however, that these will be separate as shown in Figure B.2-3
to facilitate detector testing. Thus the sidewall for one light box would weigh around 12
pounds. The strawman configuration assumes that these two boxes are separate and will
be bolted together at their adjacent flanges.

= 38em —

Figure B.2-4. The Cerenkov light box sidewall construction.

It is anticipated that the top silicon and fiber hodoscope will require a support
plate. It appears that it is not possible to use a lightweight foam support panel (which
would provide the best material uniformity) since there appear to be none that is space-
qualified. That being the case, the recommendation® is to use an aluminum honeycomb
panel with thickness 0.5 inch, facesheets of 0.020 inch aluminum, a core web size of 3/8
inch, a web thickness of 0.002 inch, and an adhesive FM-73 made by Cytek. The
adhesive has a nominal thickness of 0.0035-0.005 inch and has an average fillet thickness
of 0.002-0.005 inch. (This corresponds to an areal density of 0.0122 g cm” for each
adhesive layer and an adhesive density of 1.13 g cm>.) The weight of the adhesive is
0.020-0.030 1b ft2. It is preferred that the facesheets be made of 0.010 inch aluminum
instead of 0.020 inch to minimize interactions. A 0.5 inch thick core is assumed as the
strawman for ZIM. To use a support plate this thin will probably require a center support
post that runs vertically throughout the instrument. With that support post, the estimate is
that the displacement under space Shuttle loads would be ~0.01 inch which at this time
appears acceptable.

At present five such support plates are assumed to be required (locations indicated
by the honeycomb label and arrows on Figure B.2-3). The first would be beneath the top
two silicon planes and would support them; the second would serve as the support for the
top fibers and the top of the box for the aerogel Cerenkov (with a separate thin aluminum
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bladder for a light seal probably on the aerogel box); the third would serve as the bottom
of the box for the acrylic Cerenkov (again with a separate aluminum bladder for a light
seal probably on the aerogel box); the fourth would be the support for the bottom silicon
planes; and the fifth would be the support for the bottom fiber planes.

Figure B.2-5 shows a corner support that would be used as the vertical structural
member to tie the experiment together and as the mount to the TRD detector below. One
of these would be located at each of the four corners of the ZIM instrument. These would
also serve as the attach points for ZIM to the Space Shuttle and Space Station payload
support carrier. The JSC/Lockheed Martin Accommodation Study has suggested

Figure B.2-5. Illustration of a corner ZIM support.

additional attachment between the center of each of the ZIM side walls and the mounting
structure. It appears that four such attach points, each of which would be centered both
vertically and horizontally on the ZIM instrument, can be accommodated.

B.2.2 Instrument detectors
B.2.2.1 Silicon detector

The ZIM instrument uses arrays of silicon detectors for dE/dx measurements.
There are four planes of silicon arrays with two planes on top and two near the bottom of
the detector stack (Figures B.2-1 through B.2-3). Each plane of silicon detectors is
composed of an array of 10 cm square silicon wafers with thickness 380 um. For the two
top and two bottom detectors, each 10 cm wafer in the second plane is located directly
below the detector in the first plane in the strawman concept. (On the bottom two silicon
planes, the two planes may be offset in x and y to achieve 100% coverage if it is
important, but at present this is not being done.) The result will be an incomplete
coverage (>90% coverage) but will provide a known, uniform thickness for all particles
that traverse the active area of the top (and bottom) silicon planes. Each of the 10 cm
wafers will be segmented into a 7x7 pixel array (other segmentation may be considered)
with each pixel having dimensions 1.4 cm square. This reduces the capacitive noise on
the silicon detector, thus making it possible to extend the dynamic range down to Z=1.
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This will be usefull for calorimeter events in distinguishing the primary particle from
backsplash particles and in identifying the charge of the primary particle. In addition to
providing dE/dx measurements the silicon detectors also serve as a coarse hodoscope
which will be used for consistency checks on the fiber hodoscope described below.

A top view of a 1 m’ panel for a single silicon plane would show each plane
consisting of four 50 cm sub-panels, each of which hold a 5x5 array of 10 cm square
silicon detectors. The plan is to mount the detectors on a carbon fiber substrate that 1s
supported by a support frame. Because this is a secondary instrument structure, such a
light-weight material is not subject to the more stringent safety review criteria discussed
under Table 3 in the main text of this Report. The 50 cm frame would also be a carbon
composite frame. The two silicon planes on top (or bottom) would be stacked and
optically decoupled. The stacking method is TBD. This concept is described in more
detail in Table B.2-1.

Table B.2-1. Silicon detector layout concepts.

Module configuration

0.5 m x 0.5 m tray with individual G-10
mounts;

Carbon fiber frame

Circuitry location

On carbon frame or on bottom of
substrate

Si Detector size

10cmx 10 cm

Active area

-9.6cmx 9.6cm

Detector thickness 0.38 mm

Number of detectors 100

Number of pads/detector 49

Pad size l4cmx 1.4cm

Total channels per m 4900

Readout New VLSI

Threshold 0.5 mips (70keV)

Full Scale 20K mips (3 GeV)
Power per ADC I mW

ADC Power per m’ 10W

Leakage current/pad <1l mA

Bias -100V

Leakage current power per m’ <1W

Coverage 90% top and 90% bottom
dE/dx measurements 2 top and 2 bottom for 290% area
Uniformity 100%

Detector Mass 0.9kg

G-10 mass 27kg

Carbon mass 0.37?

Detector Cost per m’ $0.3M

% All quantities are per square meter and one layer of coverage.

The possibility of offsetting one of the silicon layers in the bottom silicon detector
to provide 100% coverage for calorimeter events has also been considered. Although this
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is still a possibility, it is not included in the baseline concept since it is not clear how
important that change is to the calorimeter and its implementation is somewhat more
difficult.

To measure cosmic rays of atomic number 10 to 100 at all energies above 300
MeV/nucleon at incident angles from 0 to 60 degrees, requires a dynamic range of
approximately 300. The charge-sensitive pre-amplifier must provide adequate dynamic
range while minimizing the contributions from electronic noise. Existing Application
Specific Integrated Circuit (ASIC) designs now in space on ACE and in the ATIC
balloon payload have solved these dynamic range and noise problems. With such ASICs
the power requirement will not exceed about 4 mW per channel. These and other ASICs
are now being evaluated for use on ACCESS. Itis expected that the dynamic range can
be extended down to Z=1 through the use of two to three ADCs for each signal.

B.2.2.2 Fiber hodoscope/TOF

Just inside of the top silicon array and at the bottom of the detector stack are two
planes of a coded scintillating fiber hodoscope. Each plane of fibers is composed of two
layers of ~0.5 mm fibers, one layer for x- and one for y-coordinate measurements. Each
of the four hodoscope layers has fibers combined into eight modules, each with width
26 cm. The fibers in each module are read out using a 16-element multi-anode PMT
(Hamamatsu 5900-016) at either end of the fibers. Adjacent fibers are grouped in pairs
(elements) and are coded differently at opposite ends such that the position of a particle
traversing the ~26 cm width of 512 fibers (256 pairs) can be unambiguously resolved to
within 0.3 mm. Thus, to read out the four fiber layers, 64 MAPMTs with a total of 1024
channels are required. The possibility of using the ACE-ASIC (16 channels/chip) to read
out the MAPMTs is under study. The bottom fiber hodoscope is identical to the top
hodoscope.

There is a possibility that the Space Station may be pointed such that the vertical
axis of ACCESS may be pointing at angles of 10 to 20 degrees from the zenith in its
torque equilibrium attitude (TEA). This will result in an increased number of particles
entering the detector from the Earth side of the instrument. In view of this, a TOF
counter which measures time of flight with precision sufficient to distinguish upward
from downward moving particles is probably needed. It is included in the strawman ZIM
instrument. The sensor for the TOF counter would be identically the same fibers and
MAPMTs as used for the hodoscope. There is a single dynode signal that is brought out
for each MAPMT. One way of implementing the TOF would be to use that dynode
signal for the TOF measurement. The electronics downstream of the dynode signal is
TBD.

B.2.2.3 Aerogel Cerenkov counter

A Cerenkov counter with a 3 cm thick aerogel (n~1.04) radiator in a light-
collection box is to be mounted just below the top fiber detector. The aerogel radiators
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that Caltech has in-house are 55 cm square in size. Thus the radiator would probably be a
4x4 array with the individual radiator cut to fit. A graphite-epoxy frame will be used to
support the aerogel. The aerogel would be supported in the frame using ~1 mm thick
Silgard pads for dynamic isolation. The aerogel density is 0.22 g cm”. The interior of
the box must be white. The light box is viewed by 48 five-inch PMTs as shown in
Figures B.2.1-B.2.3. The PMTs that have been assumed for the purpose of size and

Table B.2-2. ACCESS aerogel mounting weight estimate.

Aerogels 55cmxS5cmx3cm
Volume 9075 cm’ per block
x 16 blocks = 145,200 cm’ total volume
x 0.2 gmcm? = 29 kg (~ 64 Ibs) total mass

Mounting Frame

Volume 2,344 cm’
Density 1.76 gm cm™
Mass 4.1 kg (~ 9 lbs)

Additional items:

Top CFRP constraints ~1kg

Sylgard coating ~1kg
Assembly hardware ~05kg

Total aerogel mounting weight 6.6 kg (~ 15 1bs)

weight estimates was the Hamamatsu R877-04 tube used on HEXTE. The actual tube
that would be used is TBD. The weight including potting and magnetic shielding would
be ~1.2 kg/tube. The threshold energy for this detector would be 2.4 GeV/nucleon, and
thus could enable it to distinguish nuclei that have energy higher than minimum ionizing
from those that are on the low energy branch. Two or three ADCs for each PMT to cover
the required dynamic range would probably be required. The aerogel detector weight
estimate is 29 kg for the aerogel itself, 4.1 kg for the mounting frame, plus ~2.5 kg for
adhesive and miscellaneous hardware. Table B.2-2 gives a more detailed weight
breakdown.

A NASTRAN structural analysis of the aerogel holding frame and the aerogels
themselves mounted in the frame, under 1-G traverse loading has been carried out. The
modulus of the carbon fiber frame was adjusted to keep the maximum center deflection at
0.3 mm without a center support. The current frame design will support the aerogels with
no handling fixture to move the frame from storage to the counter.

B.2.2.4 Acrylic Cerenkov counter
A second Cerenkov counter located immediately below the aerogel Cerenkov
counter uses an acrylic-based radiator with a refractive index of about 1.5 in an

essentially identical light-collection box to the aerogel box. The radiator which we plan
to use is composed of UVT acrylic with Bis-MSB waveshifter dye added to isotropize the
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light and shift the UV component of Cerenkov light to longer wavelengths where PMTs
have greater sensitivity. The density of the acrylic material is 1.18 g cm”. This counter
would also be viewed by 48 five-inch PMTs. The threshold energy for this detector 1s 0.3
GeV/nucleon. Signals from this counter will be used as the primary charge identification
for nuclei with a saturated aerogel Cerenkov signal. We would also expect to use two or

three ADCs for each PMT to cover the required dynamic range.

Table B.2-3. ACCESS ZIM instrument mass estimate.

PMT (cm) 16
length (cm) 206
width (cm) 206
height (cm) 20 | (light box)
Co PMTs mass (kg) # Total (kg)
40 1.3 52.00
Radiator density (g cm™) thickness(cm) mass (kg)
1 0.2 3 25.46 25.46
Box
0.5 23.00
100.5
Cl PMTs mass (kg) detectors
40 1.3 1 52.00
Radiator density (g cm™) thickness(cm) mass (kg)
1 1.18 1.27 63.59 1 63.59
Box
0.5 23.00
138.6
Hodoscope PMTs mass (kg)
2 0.06 32 384
Fibers density (g cm™) thickness(cm) mass (kg)
panel 1.05 0.05 0.36 32 11.51
support 0.08 1.27 0.54 32 17.25
32.6
Si 50.0
Electronics 15.0
Misc. 25.0
Structure
TOTAL 361.6

B.2.3 Weight estimate

The current weight estimate is given in Table B.2-3. The instrument vertical
height estimate is given in Table B.2-4. As one can see, it adds up to 56 cm, not the
allotted 50 cm for the ZIM baseline. This is being worked at the time of writing this

Report.
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Table B.2-4. ACCESS ZIM instrument height estimate*.

Detector Vertical height (cm)
Silicon 3
Honeycomb 1.3
Fiber 1.3
Honeycomb 1.3
Co 227
Cl 19.3
Honeycomb 1.3
Silicon 3
Fibers 1.3
Honeycomb 1.3
Total 55.8

B.2.4 Electronics system

* Aerogel and holding fixture take up 3.4 cm vertical space.

The electronics block diagram is shown in Figure B.2-6. The ZIM electronics
subsystem provides science sensor data acquisition and control, instrument status
monitoring, event trigger information for the ACCESS facility, and command and data
handling (C&DH) functions. Interfaces to the ACCESS facility include a data bus and

ZIM Electronics Block Diagram
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Figure B.2-6. ZIM electronics block diagram.
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command interface with the ZIM as a remote terminal, a dedicated trigger interface for
coordinating triggers with the other instruments on ACCESS, and a 120 VDC power
interface.

There will also be an interface for heater power, both active and survival (keep-
alive). All data will be transmitted over the data bus to the ACCESS command and data
handler for final packetization, storage, and telemetry. All commands to the ZIM will be
via the data bus. The ZIM central electronics unit (CEU) will be based on a CPU and
will perform all command and data processing functions. We anticipate that the CEU
software will be written in the C-language. The front-end electronics will include three
distinct Application Specific Integrated Circuits (ASIC) for sensor readout. The ASIC
for the PMT pulse-height analysis will be based on a commercially available circuit
originally used in the Advanced Composition Explorer (ACE). The silicon detector
ASIC is currently being designed by CIT, GSFC, JPL, and NRL collaborators. A third
ASIC will be used for the Time-Of-Flight system (TOF) and is in preliminary design by
GSFC collaborators. The trigger logic unit will make extensive use of FPGAs for trigger
definition and ASIC control during event readout. An extensive electronic and light-
stimulation calibration system will also be provided to monitor the performance of the
sensors, both in test and on-orbit. The high voltage power supplies will provide bias
voltages to the PMTs, ranging from 800V - 1800V. The current requirements are
minimal and these supplies can be similar to those flown on previous missions. The
nominal Si bias voltage is 100V, which is compatible with the bus voltage of 120V.

B.2.5 Power and data

The power estimate is shown in Table B.2-5. Total power is 120 W. The power
dissipation in the silicon detector is assumed to be uniform over the top and bottom
silicon planes. Power is dissipated in detector leakage current and front-end electronics.
For the two Cerenkov counters (CO and C1) power is dissipated mainly in tube bases and
front-end electronics. For the fiber hodoscope, power is dissipated in tube bases and

Table B.2-5. ACCESS ZIM instrument power estimate.

# Devices Device # HVPS HVPS # Channels Channel Total (W)
power (W) power (W) Power (W)

Co 40 0.02 4 0.2 80 0.007 22
Ci 40 0.02 4 0.2 80 0.007 2.2
Hodoscope 64 0.04 16 0.16 1024 0.007 123
TOF 20.0
Si pixel 1600 0.00005 16 0.005 78400 0.0005 39.4
Digital 20.0
Sub-total 96.0
Power 24.0
Conversion

Total 120.0
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front-end electronics. The CPU, logic and power conversion electronics can be located
wherever it is most convenient or wherever it optimizes overall ACCESS thermal control.

Several approaches have been discussed regarding the data readout. A decision 1s
pending further study. Preliminary analysis showed a data rate in the vicinity of 15 kbps,
but this could change.

B.2.6 Performance and results

The silicon detectors in the charge module are critical for obtaining individual
element resolution up to the highest charge in the UH region of the spectrum.
Fortunately, the Brookhaven National Laboratory (BNL) accelerates gold ions to several
GeV/nucleon and these can be used to study the response of the detectors to high energy
UH nuclei. The results from one such experiment are illustrated in Figure B.2-7 which
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Figure B.2-7. Charge resolution in prototype silicon detectors as measured
at BNL using a 10.6 GeV/nucleon Gold beam.
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shows the charge histogram obtained in a run in which the primary beam was fragmented
to obtain ions of all charges.

Note that individual element peaks are well resolved down to the region of the iron
peak elements. This demonstrates, experimentally, that the silicon detectors will provide
the needed charge resolution for the UH nuclei studies to be performed by ACCESS.

For a 1000 day exposure on the ISS, an estimate of the number of UH nuclei that
will be observed by the charge module is shown in Figure B.2-8.
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Figure B.2-8. Estimated numbers of UH events as a function of Z expected to be
observed by ZIM.

In the region up to Z=60 there will be several hundred events even for the least
abundant elements and many more for the more abundant species. Significant numbers
of Pt and Pb nuclei will be observed along with a few actinide elements (Th, U). Overall,
these ACCESS results will be a major advance over current measurements in this
important charge range. :
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B.3. The Transition Radiation Detector (TRD)

The Transition Radiation Detector (TRD) on ACCESS is intended to measure the
charge and velocity (the Lorentz factor, y) for heavy nuclei up through the iron peak at
the highest energies. The low particle fluxes at high energy make mandatory a very large
exposure (geometric factor times flight time). The largest instruments used previously
for observations at high energy, either on balloons or in space, had exposure factors ofa
few m’sr days. Extrapolating from lower energy, for the major primary nuclei C, O, Fe
we require exposure factors of ~12 msr days for measurements up to 10" eV/particle, but
~600 m’sr days up to 10'"* eV/particle. The requirements for measurements of the rare
secondary nuclei are even more severe. If the B/C ratio, for example, continues to fall as
steeply above 10'? eV/particle as it does at lower energies, (i.e. decreasing about as E*°),
precise measurements of the spectra to 10" eV would require an exposure factor of about
60 m” st days and of about 10,000 m? st days for measurements to 10" eV per particle.

Achieving large exposure factors requires a combination of long flight time, as 1s
proposed for ACCESS on ISS, and large collecting area. The detector must measure the
charge of each incident cosmic ray as well as the transition radiation signal. The need for
a large area plus low weight precludes the use of a pressurized container, such as in our
previous Cosmic Ray Nuclei (CRN) experiment which flew successfully on the Spacelab-
2 mission® 2", Much of the TRD instrument concept for ACCESS is derived from this
previous space mission.

The TRD concept for ACCESS is sketched in Figure B.3-1 and consists of: (a) two
square scintillators on top and bottom, (b) an array of proportional tubes of approximately
2 cm diameter and 250 cm length with alternate pairs
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Figure B.3-1. The baseline TRD for ACCESS.
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arranged at right angles to provide measurements in both x and y directions, and (¢) A
transition radiation detector consisting of 6 radiator/detector pairs. The radiator may
consist of polyethylene fiber mats, and each detector would be a double layer of
proportional tubes.

This detector can be made as large as 2.5 m x 2.5 m at a weight of about 750 kg and
having a geometric factor of 8.5 m’ sr.

B.3.1 Transition radiation

A charged particle moving through a medium radiates energy, the most common of
which are bremsstrahlung and Cerenkov radiation. A related phenomenon is transition
radiation, which occurs when the incident particle crosses a sharp interface between two
different media and rapidly rearranges its electromagnetic field, both in intensity and
spatial extent®”. In the case of a highly relativistic (y = E/mc? >> 1) particle, most of the
transition radiation is emitted at x-ray frequencies. The energy dependence of the
radiation intensity is very different from that of bremsstrahlung or Cerenkov radiation.
Typically, a strong increase of the transition radiation intensity is observed with
increasing particle Lorentz factor v, up to extremely high values of y. This feature makes
x-ray transition radiation very useful for the detection of highly relativistic charged
particles and for measuring the particle's total energy.

The intensity of the transition radiation emitted at a single interface is weak and
contributes a negligible amount to the energy loss of the particle. Therefore, for practical
detector applications®’*7*722*2! the radiator must consist of a large number of thin foils,
or a large number of transitions. Radiation is produced at each of the interfaces. The
total intensity is not just the sum of the intensities from the individual interfaces, since
interference effects must be taken into account, as well as absorption. In the case of a
single interface, the intensity per unit frequency decreases monotonically with increasing
frequency, and the total intensity is proportional to the Lorentz factor. However, fora
radiator consisting of many foils, the interference effects lead to a frequency spectrum
which exhibits strong oscillations, and to a saturation in the total intensity”*””. The
detailed calculations show that the positions of the interference maxima in the spectrum
are governed largely by the radiator foil thickness, and that the onset of saturation 1s
determined by both the thickness and the spacing of the radiator foils. In order to
optimize the TRD radiator for high energies, it is necessary to tune the radiator
dimensions and frequency spectrum.

The theoretical expressions for the intensity in the general case of many interfaces
are quite complicated. However, the key features may be summarized as follows: (a) X-
rays are emitted at frequencies below yw,, where @, is the plasma frequency of the
radiator material; (b) the total emitted transition radiation increases with particle energy,
approximately linear with y, up to a saturation value, y,, which depends upon the radiator
material (©,), the radiator thickness and the size of the gaps between the radiator layers;
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and (c) The transition radiation yield is proportional to Z? for a heavy particle. Explicit
predictions must involve detailed theoretical calculations™”. Experimentally, the
observed quantity is most often the intensity integrated over all angles for which there are
analytic treatments available™”". For other situations, e.g. non-uniform radiator thickness
or variable spacings, it is necessary to integrate the equations numerically.

One of the advantages of transition radiation is that the response depends solely on
the Lorentz factor y of the particle, and therefore can be perfectly well studied with beams
of electrons and pions that are readily available at accelerators. Transition radiation is a
purely electromagnetic effect and has been shown to scale perfectly with Z° of the
primary particle. The calibration of the response for heavy nuclei can, therefore, be
established without ambiguity at accelerators. Thus, radiator concepts can be readily
studied experimentally as well as theoretically.

An example of the transition radiation response is shown in Figure B.3-2 where the
data points represent calibration measurements made at accelerators or from CRN flight
data. The signal was recorded in a multi-wire proportional chamber (MWPC). Note the
y-axis is signal/Z* which allows heavy ion data to be included on the same plot. The
radiator in this case was a collection of polyethylene fibers (much like the fiber filling in
some types of ski jackets) which provided a random set of interfaces to the particle.
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Figure B.3-2. Transition radiation signal ina MWPC as a function of the Lorentz factor,
Y.

The transition radiation x-rays undergo photoelectric conversion in the MWPC to
produce the transition radiation signal. This signal is superimposed upon the ionization
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signal of the particle. The straight line in the figure shows the ionization signal
(measured by removing the radiator). The transition radiation signal becomes observable
for y > 400 and increases with y until saturation is reached around y = 4 x 10*. Thus, the
response curve of the TRD is characterized by a signal due only to ionization loss at low
energies, but increasing rapidly for y > 400. This increase with increasing y makes
possible an accurate measurement of v, i.e. of the energy. In units of total energy per
particle, the Lorentz factor range 400 y 40,000 corresponds to about 6 x 10" to 6 x
10" eV for oxygen, and 2 x 10" to 2 x 10"* eV for iron.

The yield for singly charged particles may be only a single photoelectron in the
detector, and is subject to large fluctuations, which can be studied at accelerators. In
flight, however, the yield will increase by Z? for heavy nuclei, thereby reducing
fluctuations. Moreover, the design of Figure B.3-1 envisions many independent
measurements of the transition radiation signal in the six radiator-and-detector layers
shown. This will allow fluctuations to be analyzed from the actual flight data.
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Figure B.3-3. Simulated energy loss signal for C (top) and Fe (bottom) for
different Lorentz factors.

In order to determine the response of the detector quantitatively, a full Monte Carlo
simulation of the TRD has been performed. The simulation assumes an isotropic flux of
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nuclei, reconstructs the particle trajectories, determines the ionization signals in each tube
layer, and determines the x-ray signals deposited in the tubes, assuming Poisson fluctua-
tions in the number of photons. The simulation uses the calibration curve of Figure B.3-2
for the yield of x-rays for each particle trajectory through the radiator stack. The result is
shown in Figure B.3-3 for carbon and iron nuclei at three different values of v.

At low v, the ionization signal is observed and is very sharp. Asy increases the total
signal increases with the addition of the transition radiation component. From the widths
of these distributions, the energy resolution of the detector, which depends on both Z and
¥, can be assessed.

For a given application, devising a radiator plus detector system to cover the needed
range in y involves optimizing many parameters, 1.¢. radiator material and structure,
overall thickness, size of detectors, and composition of the gas. Thisisa task which is
underway for ACCESS and involves both theoretical calculations and accelerator testing
of prototype devices.

B.3.2 Detector design and construction

The centerpiece of this module is the transition radiation detector for energy
measurements. Without a pressurized shell as was used for CRN, we cannot utilize

RADIATOR

DETECTOR
(PROPORTIONAL TUBE)

Figure B.3-4. Radiator and proportional tube assembly.

MWPC's or drift chambers, since, pressurized at one atmosphere, these devices would not
withstand external vacuum. To resolve this problem, the TRD design utilizes arrays of
cylindrical single wire proportional tubes. Such tubes, with thin walls of aluminized
Mylar, are inexpensive to make, simple to operate, and, most importantly, can easily
work at zero outside pressure. These tubes are quite rigid when pressurized, can be
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several meters long, and can be easily arranged to form light weight arrays of several
square meter area. A sketch of such a proportional tube-radiator sub-assembly is shown
in Figure B.3-4.

Each proportional counter tube has a laminated Mylar wall made conductive with
an aluminum coating on the inside. The tube diameter is 2 cm, and its lengthis 2.5 m. A
50 um thick stainless steel wire along the axis of the tube forms the anode of the counter.
Filled with a xenon/methane mixture, these tubes operate in the proportional regime at an
absolute pressure of 1.5 atmosphere. These tubes are extremely light-weight, and are
commercially available at relatively low cost. They are manufactured by spiral-winding,
and laminating, two or more strips of plastic foil, and are available in arbitrary
dimensions, with high-precision mechanical tolerances. Laboratory tests have shown
that: (a) no gas leaks or outgassing problems compromise their performance as
proportional counters at low gas flow rates; (b) the aluminum coating provides good
electrical conductivity, with a typical resistance of 100 Q over 5m length; (c) the tube
walls are transparent to low energy x-rays as required for the detection of transition
radiation: the measured attenuation of x-rays in a 50 pm thick tube wall is 9% at 6 keV,
and 4% at 8 keV; and (d) the tube walls withstand over-pressures of several atmospheres;
even for tubes with the lowest wall thickness (50 pm) the burst pressure is larger than 5
atmospheres.

TRD — ACCESS
GAS SERVICING

Figure B.3-5. Gas system for TRD proportional tubes.

The consequence of using the proportional drift tubes for the ACCESS mission is
that the payload must include a gas supply and a circulation system, if a flow rate is to be
maintained. The size of this reservoir will be determined by the exact level of the (small)
gas leakage, both from around the end caps of the tubes and through the walls of the
tubes. This gas reservoir will require a pressurized tank which must be safety-certified
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for launch on the shuttle. Whether or not, a tank re-fill will be necessary during the life
of the ACCESS mission is one of the important issues for study as the project develops.

A preliminary baseline concept for a gas handling system for the ACCESS TRD
module is shown in Figure B.3-5 and involves a circulating pump to maintain the flow
rate through the tubes as well as in-line filters to remove any contaminants that are
introduced into the gas mixture. As long as the leak rate is low, such a system could keep
the xenon-methane gas operating for the life of the mission.

Alternative scenarios for the gas system involve operation in a fill-purge-re-fill

mode rather than a re-circulating system. A trade study will be needed to decide upon the
best method for handling the gas system requirement for the TRD.
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Figure B.3-6. TRD scintillator concept

250cm

The use of a gas mixture such as xenon-methane, however, provides a thermal
constraint. At low temperatures (about 0 °C) the two components of the gas can separate.
Once this has happened, they do not readily re-mix even when the temperature is
increased. Thus, the thermal environment for the gas reservoir must be designed
carefully, and, probably, heaters will be necessary to avoid component separation in the
gas.

The other detectors involved in the TRD module are the top and bottom

scintillators. Here we envision a relatively simple désign such as is sketched in Figure
B.3-6.
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The scintillator is divided into four pieces, each side of each piece being connected
to a bar of wave-shifter material. Both ends of each wave-shifter bar are viewed by
photomultiplier tubes (PMTs), indicated by the dark sections of the bars in Figure B.3-6.
These PMTs are readout via pre-amps and shapers (open squares) and fast summing
amplifiers (closed squares with open dot in center). This electronics is located on the
edges of the detector, and signals are passed to the digital electronics which may be
located nearby.

B.3.3 Charge and trajectory measurements

The particle charge is first measured by the top and bottom scintillators with an
expected resolution of about a quarter charge unit. Comparison of the top and bottom
scintillators determines if a particle has fragmented in traversing the TRD module.

Charge can also be measured from the ionization signal in the proportional tubes,
particularly those at the top of the stack. However, the ionization signal increases
logarithmically with increasing y (the "relativistic rise"), amounting to roughly a 50%
increase in the ionization signal from minimum ionizing to highly relativistic particles.
This increase is a desirable feature since it provides a means of removing minimum
ionizing particles, e.g. an event will only be accepted if a TRD signal is accompanied by
a pulse height in the proportional tubes well above the minimum ionizing level. As the
flux of low energy cosmic rays traversing the instrument is much higher than the flux of
those in the TRD region (y > 400), this discrimination against low energy background is
important.

On the other hand, the relativistic rise compromises the uniqueness of the charge
determination since a highly relativistic particle of charge Z may not be distinguishable
from a minimum ionizing particle of higher Z, if just the tubes are used for charge
identification. However, the relativistic rise in a solid, e.g. the scintillator, is much
smaller than in a gas (the "density effect"), so the scintillator is able to resolve the
ambiguity. Thus, by combining measurements from the scintillator layers with the
proportional tubes, an accurate charge measurement for all of the elements can be
obtained.

It is also necessary to know the trajectory of the particle through the instrument in
order to correct for the angle of incidence and the corresponding actual pathlength in the
detectors. Here information from the charge module (ZIM) at the top can be helpful for
the heaviest events.

The proportional tubes are arranged, alternately, in orthogonal directions to permit
trajectory determination in the TRD module. Using a tracking algorithm which is based
on the fact that, within fluctuations, tube signals are proportional to the pathlength within
each tube, the trajectory which best reproduces the signals found in all tubes can be
determined. Simulating this procedure with a Monte Carlo code, assuming a stack of six
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double layers of tubes, as in Figure B.3-1, results in trajectory reconstruction that is
accurate to about 0.4 mm in both the x- and y-directions for carbon nuclei. For iron, the
reconstruction (one sigma) improves to about 0.3 mm. This excellent trajectory
reconstruction allows us to normalize the total ionization signal measured in the stack to
the total pathlength traversed by the particle in order to determine the specific ionization
dE/dx, and therefore the charge Z of the particle.

B.3.4 Readout, electronics, power, and data

There are two types of detectors to be readout in the TRD module, the PMTs
associated with the scintillators and the proportional tubes. There are only 64 PMTs to be
analyzed which can be accomplished with standard electronics. There are many more
proportional tubes to sample, and these require the use of ASICs to conserve power. A
typical ASIC for the proportional tubes may involve a pre-amp, shaping amp and
track/hold circuit. The held pulse is then shifted out to an ADC circuit for digitization. A
schematic block diagram of the electronics for the TRD is shown in Figure B.3-7, with
the necessary location of the modules indicated at the bottom.

TRD Electronics Block Diagram

Sensors Front End Digital Electronics
2500 Charge Digitization
Proportional Integration Formatting
Tubes (20) 4)
Data Acq.
Housekeeping
Gas Control Sys
Charge Coms
64 PMTs Integration Digitization M
Formatting
(16)
M
Fast Trigger Power
Amps Logic Converters
(8) M
Location: Near Sensors Arbitrary Arbitrary

Figure B.3-7. Electronics block diagram for baseline TRD on ACCESS.
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The estimated power required for the TRD is summarized below:

REGULATED POWER ESTIMATE:

64 PMT @ 0.12w - 77

16 Scin. preamp & shaper - 1.6

8 Scin. fast sum amp - 12

20 Prop. Tube linear ass'y - 32

4 Prop. Tube ADC ass'y - 48

1 Scintillator rack - 14

1 Main rack - 60
SUB-TOTAL - 165 watts

1 Power Converter - 55 watts

(assume 75% efficient)
TOTAL 220 watts

To this must be added the power involved in (a) the gas handling system and (b)
heaters (if needed) for thermal control. These latter remain undefined at this time, so that
power estimates are not possible.

The estimated event rate for the TRD module is about 100 events per second. Each
event readout requires about 2100 bits. This gives an event data rate of 210 kbps. To this
must be added housekeeping data, rates, calibration frames and the like which all-together
are estimated to add another 2 kbps. Thus, the anticipated data rate from the TRD
module is 212 kbps.

B.3.5 Anticipated Results

The baseline TRD for ACCESS will measure events with Z > 3. Projecting the
results from a 1000 day exposure of the instrument on the ISS, Figure B.3-8 shows the
expected results for the B/C ratio, compared to lower energy results and to two theoretical
curves for different models. Even if the ratio continues to fall as in the Leaky Box model,
the ACCESS data can trace the energy dependence to nearly 10" eV/nucleon. (It should
be noted that Figure B.3-8 shows but one of the several secondary to primary ratios that
ACCESS will be able to measure.)

Turning next to the primary elements, Figure B.3-9 shows the type of results

anticipated for the CNO nuclei and the Iron group. Here, again, two models are shown,
the leaky box and the Residual Pathlength, the latter being similar to the upper curve in
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Figure B.3-8. B/C measurements expected from the ACCESS
TRD compared to previous measurements.

the previous figure. In addition, all-particle spectrum measurements are indicated, and
the scale is total energy per particle. Error bars on the calculated values (large solid
points) are statistical, demonstrating that the number of events observed by ACCESS will
not limit the interpretation. Thus, ACCESS data will be able to resolve the discrepancies
in the previous results and trace the energy spectra of the elements to close to the knee
region of the all particle spectrum.
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ACCESS compared to previous results and models.
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B.4. Composite Detail of the ACCESS Instrument

The three experiments, CAL, TRD, and CM (ZIM) together form the overall
ACCESS instrument. A conceptual cross section of the instrument is shown in Figure
B.4-1.
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Figure B.4-1. Cross section of the Composite ACCESS instrument.

This composite was created by the University of Maryland group’® for the ACCESS

simulation team. It is based upon the USS/ACCESS configuration (see Figure 14 and
Figure E.1) and does not include some of the evolution in the experiment designs that has
occurred since beginning this study. However, Figure B.4-1 provides a perspective of the
overall ACCESS instrument concept which is the basis for this accommodation study.
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Appendix C. ISS Assembly Sequence

For reference, the following is a flight-to-flight detail of the currently-planned ISS
assembly sequence [SSP-50110, Rev. Db]. Phase 1 was the joint US-Russian Mir
program. See the ISS 10/2/98 planning reference at the Assembly Sequence website.

Launch  Right Delivered Bements
Date
Nov-98 1A/R FGB (Launched on PROTON launcher)
Dec-98 2A  Node 1 (1 Stowage rack), PMA1, PMA2, 2 APFRs (on Sidewalls)
May-99  2A.1 Spacehab Double Cargp Module, OTD (on Sidewall), RS Cargo Crane
Jul-99 IR Service Module (Launched on PROTON launcher)
Aug-99 1P Progress M1
Aug-99 2A.2 Spacehab Double Cargo Module
Oct-99 2P  Progress M1
Oct-9 3A  Z1 truss, CMGs, Ku-band, S-band Equip, PMA3, EVAS (SLP), 2 Z1 DDCUs (Sidewall)
Dec-99 4A  P6, PV Amay (6 battery sets) / EEATCS radiators, S-band Equipment
Jan-00 2R Soyuz - T™ -(a)
Feb-00 5A  Lab (5 Lab System racks), PDGF (on Sidewall)
Feb-00 3P  Progress M
Mar-00 5A.1 Lab OQutfitting (Sys racks, RSRs), (on MPLM)
Apr-00 4P  Progess M1
Apr-00 6A  Lab Outfitting (Payload Racks, RSPs, RSRs) (on MPLM), UHF, SSRMS (on SLP) - (b)
Jun-00 2S  Soyuz - TMA
Jul-00 7A  Airlock, HP gas (2 02, 2 N2) (on SLDP)
Jul-00 5P* Progress M
Aug00 4R* Docking Compartment 1 (DC1), RS Cargo Crane
Aug00  7A.1* 4RSRs, 6 RSPs, ISPRs (on MPLM), OTD, APFR (on Sidewall)
Sep-00 6P*  Progress M1
Oct-00 7P*  Progress M1
Nov-00  UF1* ISPRs,2 RSRs, 2-RSP-2s (on MPLM), Spares Warehouse
Dec-00 8P* Progress M1
Dec-00 3s*  Soyuz-TM
Jan-01 8A* SO, MT, GPS, Umbilicals, AL Spur
Mar-01 UF2* ISPRs, 3 RSRs, t RSPs, 1 RSP-2s, MELFI (MPLM), MBS, PDGF (Sidewalls)
May-01 9A* Sl (3 rads), TCS, CETA (1), S-band
Jul-0t 9A.1* Science Power Platform w/4 solar arrays and ERA
Aug-01 11A* P! (3rads), TCS, CETA (1), UHF
TBS 3R* Universal Docking Module (UDM)
Sep-01 12A* P3/4, PV Array (4 battery sets), 2 ULCAS
TBS 5R* Docking Compartment 2 (DC2)
Dec-01  12A.1* ISPR. 3 RSRs, 1-RSP-2s, 1 RSP-1 (MPLM), PS5, Radiator OSE
Jan-02 13A* S3/4, PV Array (4 battery sets), 4 PAS
Apr-02 10A* Node 2 (4 DDCU racks), NTA (on Sidewall)
May-02  10A.1* Propulsion Module

* - Sequence and schedule after Flight 7A are under review.
(a) - 3 Person Permanent International Human Presence Capability

(b) - Microgravity Capability
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Appendix C. ISS Assembly Sequence (Continued, Page 2)

Launch
Date
Jul-02
Sep-02
TBS
Oct-02
Now-02
Feb-03
Mar-03
T8S
Jun-03
Jul-03
TBS
Sep-03
Oct-03
Dec-03
Jan-04
Mar-04
Apr-04
May-04
Jul-04

Right

1/A
1y
9R*

UF3*

UF4*

2/ A*

14A*
8R*

UF5*

20A*
10R*
17A*
1E*
18A*
19A*
15A*

UF6*

UF7*

16A*

Delivered Elements

ELM PS (4 Sys, 3 ISPRs, 1 Stow), 2SPPSA w/ truss, Conform. Shields (ULC)
JEM PM (4 JEM Sys racks), JEM RM5

Docking & Stowage Module (DSM) (FGB module type)

ISPRs, 1 JEM rack, 1 RSP, 1 RSP-2 (on MPLM), 1 Express Pallet w/ PL

Truss Attach Site P/L, Express Pallet w/ Payloads, ATA, SPDM (SLP)

JEM EF, ELM-ES w/ Payloads, 4 PV battery sets (on Spacelab Pallet)
2SPPSA w/ truss, 4 SM MMOD Wings (ULC), Cupola (SLP), Port Rails (ULC)
Research Module #1 (RM-1)

ISPRs, 1 RSP, 1 RSP-2 (on MPLM), Express Pallet w/ Payloads

Node 3 (2 Avionics, 2 ECLSS racks)

Research Module #2 (RM-2)

1 Lab Sys. 4 Node 3 Sys, 3 CHeCS, 2 RSP-2s, ISPRs (MPLM) - (c)

APM (5 ISPRs)

CRV #1, CRV adapter - (d)

5RSP-2, 1 RSR, ISPRs, 4 Crew Qtrs. (on MPLM), §5 - (¢}

S6, PV Array (4 battery sets), Stbd MT/CETA rails

3 RSP-2s, 1 RSP. ISPRs (on MPLM), 2 PV battery sets (on SLP)

Centrifuge Accommodations Module (CAM), ISPRs (TBD)

Hab (6 Hab sys racks, 2 RSRs, ISPRs) - (f)

* _ Sequence and schedule after Flight 7A are under review.
(c) - 6 Person USOS ECLSS Capability
(d) - 6 Person Permanent Intemational Human Presence Capability
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Appendix D. Space Station Program and Space Shuttle Documentation

The following SSP documentation should be retrievable as a download from the PALS

website in Appendix K.

Space Station Program (SSP)

SSP 30000 SSP Definitions and Requirements

SSP 30233 SS Requirements For Materials and Processes

SSP 30237 SS Electromagnetic Emission and Susceptibility
Requirements

SSP 30238 SS Electromagnetic Techniques

SSP 30240 SS Grounding Requirements

SSP 30242 SS Cable/Wire Design and Control Requirements For
Electromagnetic Compatibility

SSP 30243 SS Requirements For Electromagnetic Compatibility

SSP 30245 SS Electrical Bonding Requirements

SSP 30242 Space Station Cable/Wire Design

SSP 30425, Rev. B

SSP 30426
SSP 30482

SSP 30512, Rev. C

SSP Natural Environment Definition for Design
SS External Contamination Control Requirements
Electrical Power Specification and Standards

SS Ionizing Radiation Environment for Design

SSP 30513 SS Ionizing Radiation Environment Effects Test And
Analysis Techniques
SSP 41000 System Specification For The International Space Station
SSP 42131 $3/P3 to AP/UCC ICD (under revision, CR 1135)
SSP 50005 International Space Station Flight Crew Integration Standard
SSP 50110 Multi-Increment Manifest Document
SSP 50184 HRDL Physical Media, Physical Signaling and
Protocol Specification
SSP 50513
SSP 52000-A04 Payload Command and Data (C&D) Integration Data File
SSP 52050 Software ICD
SSP 57000-IRD-TAP IRD, Truss Attached Payloads
SSP 57000-PAH-LSP PAH, Launch Site Processing
SSP 57000-PAH-TAP PAH , Truss Attached Payloads
SSP 57003 Attached Payloads IRD
SSP 57010 Payload EMI/EMC Control Plan
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Appendix D. Space Station Program and Space Shuttle Documentation (continued)

Shuttle Program (NSTS)

NSTS-07700, Vol. XIV Space Shuttle System Payload Accommodations
Appendix 1
NSTS 1700.7B Safety Policy and Requirements for Payloads Using the
Space Transportation System
NSTS 1700.7B, ISS Safety Policy and Requirements for Payloads Using the
Addendum International Space Station (ISS Addendum)
NSTS/ISS 18798B Interpretations of NSTS/ISS Payload Safety Requirements
NSTS-13820 Implementation Procedure for NSTS Payloads System
Safety Requirements
NSTS/ISS 13830C Payload Safety Review and Data Submittal Requirements

For Payloads Using the Space Shuttle/International
Space Station

NSTS-14046 Payload Interface Verification Requirements
NSTS-21000-IDD-ISS International Space Station Interface Definition Document
JSC 73642

JSC SC-C-0005C

KHB 1700.7B Space Shuttle Payload Ground Safety Handbook

ISS Telecommunications, Ground Segment

HOSC-DOC-237,Rev. A ISS HOSC: Payload Commanding (Marshall Whitepaper,
November 17, 1998)

MSFC-SPEC-2123B Payload Data Services System (PDSS) Development
Specification (Fall, 1998)

Military Standards

MIL-STD-5G Military Handbook 5G

MIL-STD-210 Climatic Extremes for Military Equipment

MIL-STD-461 Electromagnetic Emission and Susceptibility
Requirements for the Control of Electromagnetic
Interference

MIL-STD-1576 Electro-Explosive Subsystem Safety Requirements and Tests
Methods for Space Systems

MIL-STD-1553b Digital Time Division Command/Response Multiplex
Data Bus

MIL-STD-1776 Air Crew Station and Passenger Accommodations

MIL-STD-2073 Standard Practice for Military Packaging
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Appendix E. ACCESS Structural Options

Figure E.1. The four options addressed in the J SC/LSU Accommodation Study.

ACCESS on USS
Integration Option 1

Total Average Payload Mass Estimate: 4968 kg (1 0952 Ibs.)
Overall approximate weights and dimensions for the preliminary structural assessment of
the ACCESS Expenimert integrated on the exsting Unique Support Structure (USS)
design developed for the Alpha Magnetic Spectrometer {AMS) Experimert,
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8 03m and to attach it to the PAS  With an existing USS weight of 832 kg
2000 kg " (1834 Ibs) the total itegration hardware mass is 1082 to 1154 kg (2385

o 2544 1bs). Therefore the total ACCESS Payload mass is 4932 to
5004 kg (10873 to 11032 Ibs) with an average of 4968 kg (10952 bs).

1.0m I

Al envelopes are squares
in the Y-Z plane.

ACCESS on ECS
Integration Option 2

Total Average Payload Mass Estimate: 5041 kg (11113 Ibs.)
(Using total weights from the payload on structures 1,6, and 9.)

i' 250 m
Charge Module
360 kg 05m X
Orbiter coordinate system
+Z is out of the paper
Transition
Radiation
Detector 12m
25m (TRD)
750 kg
—
) There is another 140 kg of avionics, thermal control system, gas
5 Silicon Matrix & resupply system, debris shields, and contingency mass for a total
- Graphite Targets 0.5m
© ACCESS Experiment mass of 4200 kg (9259 Ibs)
€ 950 kg
S —— For this preiminary nent, all mass is_assumed 1o be
© 0.3 m uniformly distributed throughout each of the enveiopes shown.
&} 2000 kg '

. An ECS to carry this experiment mass woud weigh 658 to B19 kg
(1450 to 1805 Ibs). 102to 114 kg (225 to 251 bs) is requred to

Al envelopes are squares
in the Y-Z plane.
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make the ECS depbyable and 1o attach i to the PAS. Therefore
the total ACCESS Payload mass is 4960 1o 5133 kg (10934 to
11316 bs)



Appendix E. ACCESS Structural Options (continued)

ACCESS on ECS

Total Payload Mass Estimate: 6014 kg (13232 Ibs.)

, 230
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g BGO )
2142 kg 0-3""

1035 m l

Al srvelopes are squares
in the Y-Z plane.

ACCESS on ECS
Integration Option 4

Total Average Payload Mass Estimate: 6807 kg (15006 Ibs.)
(Using total weights from the payload on structures 1,6,and 9}
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Integration Option 3

X

Orbiter coordinate system
+Z is out of the paper

There is another 250 kg of avionics, thermal control system gas
resupply system, debris shields, and contingency mass for a total
ACCESS Experiment mass of 5031 kg (11069 lbs)

For this preliminary assessment, all mass is assumed to be

uniformly distributed throughout each of the envelopes shown

An ECS to camry this experiment mass would weigh 865 kg {1903
tbs). 118 kg (260 ibs) is required to make the ECS depioyable and
to attach it to the PAS. Therefore the total ACCESS Payload
mass is 6014 kg (13232 Ibs).

ZT—'Y
X

Orbiter coordinate system
+Z is out of the paper.

There is another 250 kg of avionics. themnal control system. gas
resupply system, debris shieids, and contingency mass for a total
ACCESS Experiment mass of 5876 kg (12954 Ibs)

For this preliminary m, ali mass is_assumed to be
uniformly distributed throughout each of the ervelopes shown

An ECS 1o carry this experiment mass would weigh 758 to 913 kg
(1672 to 2012 Ibs). 109 to 121 kg (240 1o 267 Ibs) is required to
make the ECS deployable and to attach it to the PAS.  Therefore
the total ACCESS Payload mass is 6743 to 6909 kg (14866 to
*15233 Ibs).



Appendix E. ACCESS Structural Options (continued)

Figure E.2. The thirteen Option 2 ECS structures analyzed under the JSC/LSU
Accommodation Study (with emphasis on Structures 1, 6, and 9). Options 3 and 4 are
very similar. Not shown is Structure 12 which is much like Structure 7.

STRUCTURE 1 STRUCTURE 2 STRUCTURE 3

STRUCTURE 5 STRUCTURE 6

STRUCTURE 7 STRUCTURE 9

STRUCTURE 10 STRUCTURE 1 STRUCTURE 13
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Appendix F. ISS Center-of-Gravity (CG) Restraints

2.4 CofG SHELL GRAPHICS
Shell for 11000 1bs.

Z,< 78.2]-2.34[2-04“:1bs(Xq)-I.()9!3-02“'Xqz-z.7()E-03"abs(Y,‘)-4.85E-02‘Y‘tz«l-5.79E-06")(,:“Yq2

7

Zcg

Figure F.1. Center-of-gravity envelope.

2.4 CofG SHELL GRAPHICS
Shell for 13000 Ibs.

Z., < 69.88-2.24E-04%abs(X,)-9.88E-03%X 2. 70E-03*abs(Y,,)-4.85E-02*Y . 45.79E-06* X, *Y ;>

2cg

Figure F.2. Center-of-gravity envelope.
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Appendix F. ISS Center-of-Gravity (CG) Restraints (continued)

2.4 CofG SHELL GRAPHICS
Shell for 15000 1bs.

Z. < 64.16-2.07E-04%abs(X ;)-8.23E-03*X -2.70E-03%abs(Y )-4.85E-02*Y . *+4.66E-06*X *Y .

175

150
PAS CG
Z-axis 125
(inches)

75

[ Acceptable Region |

0 5,000 10,000 15,000 20,000

Maximum Payload Weight At $3 and P3 PAS Site
(Ibs)

Figure F.4. Weight-and-balance problem for ISS attached payloads, prior to CR 1135,
(assuming X = Yo = 0 in PAS coordinates).
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Appendix G. ISS Environments

There are a number of environments which affect the ISS payload. These can be
distinguished according to mission phase: (1) ground operations; (2) ascent, orbital
payload transfer and deployment; (3) on-orbit operations; and (4) payload retrieval,
descent, and landing. The on-orbit environments relevant to ISS payload design include
the following:

» Gravitation

« Neutral atmosphere

» Thermal

» Plasma

» [onizing radiation

+ Micro-meteoroids and Orbital Debris
« Electromagnetic Interference (EMI)
« Contamination

« Acoustics, Stress, and Vibration

A general ISS baseline reference on this subject is SSP 30425, available for down load
from the PALS website.

Gravitation

At altitudes of 350-500 km, ISS will orbit through the Earth's gravitational field,
with perturbations from the Moon and Sun. Due to the pear-shaped and irregular form of
mass distribution in the Earth, the ISS orbit precesses in space as a result of the
gravitational torques acting upon its orbital angular momentum. As this happens, the ISS
attitude control system attempts to maintain its own pointing attitude by modulating its
resultant angular momentum using control moment gyros (CMGs). The dynamic
consequence of all external torques such as gravitation, the ISS instrinsic mass properties
(such as moments of inertia and total weight), and the desired pointing attitude in inertial
space, is a torque equilibrium attitude (TEA).

Relevant documentation is: Any publication on orbital dynamics, the U.S. Skylab
program (CMGs), and the Russian Mir program (gyrodynes).

Neutral atmosphere

As the ISS moves about low Earth orbit (LEO), it interacts with the Earth's upper
tenuous atmosphere and experiences effects which influence payload structural design,
material selection, and operations. Two features of this atmospheric environment are
particularly relevant: (1) atmospheric density; and (2) atmospheric composition. They
both vary as a function of solar activity and altitude above the Earth. Density generates
orbital drag and decay which reduce altitude, in addition to external aerodynamic torques
which the ISS attitude control system must account for in its torque equilibrium attitude
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(TEA). To compensate for the orbital decay, the ISS orbit (Figure G.1) will undergo a
periodic re-boost (Figure G.2). Atmospheric composition (Figures G.3 and G.4)
manifests itself as molecular and atomic components with differing scale-heights as a
function of solar activity. The presence of atomic oxygen produces atmospheric erosion
of payload material, its oxidation, and its surface contamination over long periods.

51.6° Inclination

Shuttle Launch and
Primary Landing Site

N 516" ghuttie Secondary Landing Si I

{Dryden Flight Research Cente a(

)
g o
- L1at. 52°N Q " &M
U

~Lat.52°S
Popuiation Coverage ~ 95

Figure G.1. Geographic perspective of typical ISS groundtrack.

270 o 500
+ Assembly
260 ‘:—‘E Complete p482.9
250 N 465.8
1k f\ A '\ X P\k 4488

= ] TSN Beorr E

T a \l\\ A 4317 S

LA S AR:) B Py

] ] o [-414.6 ©

§ 220 - “‘1 N S

2 1 ' F397.5 =

£ 210 3— =

< i N 380.4 o

o 200 : 1 \‘Dl\n A A E

= LAY " 3633 €

S 190 Jewrmr 8

g E B 3462 ©

1]

& 180 3201 ©
170 3 . 312
160 f— 294.9
150 :“...| b " FPPYPINTE STTUTTIVITE (TIUTITETTIVRTUVISTOUNAT (AT T Lal YT ITTUTIVIITNY VIVTUTTY 2778

111/2002 1/1/2004 1/1/2006 1/1/2008 171/2010 11172012
Assumes: SSP 30425 Solar Flux with a Date

Altitude Profile (nm)
o Pressurized Logistics Flight
® Unpressurized Logistics Flight

Most Likely Start Date for Solar Cycle #23

Figure G.2. Generic ISS re-boost profile, using a previous assembly sequence and launch
ephemeris.
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Figure G.3. Number density of atmospheric constituents (after SSP 30425).
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Figure G.4. Typical atmospheric mass density profiles at high and low solar activity.
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Relevant documentation is: SSP 30425, Rev. A and B; NASA TM 100351; the
Marshall Engineering Thermosphere (MET) model; the Mass Spectrometer Incoherent
Scatter (MSIS) model; Global Reference Atmosphere Model (GRAM).

Thermal

The on-orbit ISS thermal environments are natural and induced. Natural sources
of thermal variation and fluctuation include the sun (solar constants for cold, mean, and
hot solar activity), the Earth's albedo, the Earth's thermal radiation, and deep space
temperatures. These are all influenced by ephemeris (season and time), solar cycle, cloud
cover, and orbital state vector (inclination and altitude). The consequence is payload
surface temperature variation, thermal stress, heat rejection, and electrical power
fluctuation. Induced sources of thermal variation derive from the coupled thermal
performance of the ISS constituents themselves. These range from orbital characteristics
(flight attitude and state vector) and ISS geometry, to material thermal and optical
properties (absorptivity, emissivity, and transmissivity). Examples include thruster
plume impingement, contamination of payload thermal coatings, and Shuttle Orbiter
shadowing.

Relevant documentation and modeling is: SSP 30425, Rev. B; the Marshall
Engineering Thermosphere (MET) model; the Mass Spectrometer Incoherent Scatter
(MSIS) model; the Global Reference Atmosphere Model (GRAM).

Plasma

The on-orbit ISS plasma environment is likewise natural and induced. Low-Earth
orbit (LEO) is a complex state of ionized gas (plasma) generating electric fields and
electric potentials (and voltages) which affect the ISS performance and behavior. Natural
sources (Figure G.5) include the Earth's trapped radiation belts, auroral charging,
equatorial and meridional electrojets, the Earth's magnetosphere and plasmasphere, and
the presence of the Earth's geomagnetic field. There also is a day-night effect as the ISS
orbits in and out of a daytime and nightime plasma environment each of its orbital
periods. Induced plasma sources include ISS and Shuttle thruster firings, thruster plumes,
and venting of gases. In order to control the electric potential variations of this complex
plasma environment, the ISS electrical system includes a plasma contactor which
attempts to equalize potential gradients appearing across it, as well as a thorough
electrical grounding system. The natural and induced plasma environments are coupled
together by means of well-understood space plasma physics: (1) plasma waves and
magnetohydrodynamics; (2) sparking, arching, and sputtering; (3) spacecraft charging in
the auroral and SAA zones; (4) spacecraft corona and electrostatic discharge; (5)
spacecraft rendezvous and docking; and (6) geomagnetic electrojet effects. All of these
combined plasma phenomena (natural and induced) contribute to payload material
degradation and enhanced EMI. Risk mitigation is the plasma contactor which attempts
to control the ISS potential differences to within % 40 volts of the ionospheric plasma
potential, and grounding architecture.
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Figure G.5. Earth’s plasma environment, adapted from Heikkila™.
(reprinted by permission of the AGU)

Relevant documentation is: JGR 97, 2985 (1992), Ref. 80; JGR 90, 11009
(1985), Ref. 81; SSP 41000; SSP 30425; SSP 30420; SSP 30240; SSP 30245; IGRF (Ref.
83); IRI (Ref. 84); AP-8 and AE-8 (Ref. 85); EWB 3.0 (Ref. 86).

Ionizing radiation

ISS payloads are continuously exposed to charge particle radiation and cosmic
rays (ionized nuclei) which vary with solar activity (Figure G.6) and geomagnetic activity
(Figure G.7). Sources include: (1) inner trapped radiation belts of the Earth (Figures G.8-
G.11); (2) Galactic cosmic rays; and (3) energetic solar event particles (SEPs). The
consequences include material degradation, electronic microcircuit and avionics single-
event effects (SEEs), human radiation exposure, and payload experiment anomalies.
SEEs include SEU or single-event upset, transients, latch-up, burnout, and gate rupture.
The highly energetic events can even result in total avionics failures and partial or total
loss of payload electronic circuitry functions. Risk mitigation against space radiation
includes some shielding (~ 250 mils) as beneficial for the low energy particles (Figures
G.12-G.14), ops work-arounds (such as power-off during energetic solar events or
possibly presence in the SAA), and multi-path redundancy design in avionics such that
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Figure G.6. Solar flux model (F,,,) over the mean solar cycle.
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hard failures are compensated for and are multi-fault tolerant. Figures G.6-G.14 are
adapted from SSP 30512C.

Relevant documentation is: Messenger & Ash, Single Event Phenomena (Ref.
39); JGR 98, 13281 (1993), Ref. 82; SSP 30000, Sec. 3, M1; SSP 30420B; SSP 30425B;
SSP 30512C; SSP 30513A,B; SSP 50005; IGRF (Ref. 83); IRI (Ref. 84); AP-8 and AE-8
(Ref. 85); EWB 3.0 (Ref. 86).

Relevant computer transport codes and radiation simulation models include:
IRI86 and IRI90, APSMAX/MIN, AESMAX/MIN, BREM, PDOSE, HZETRN, VETTE,
CREME, Proton Vector Flux model, CADRays, IBM SEU Code, Shieldose, GEANT,
and FLUKA.

Relevant websites include Boeing’s Radiation Effects Laboratory.

Micro-meteoroids and Orbital Debris

Orbiting in LEO, the ISS will undergo collisions with natural micro-meteroids
and man-made orbital debris (space junk) left over from spacecraft collisions and
explosions. Highly improbable catastrophic collisions are not considered here. However,
NASA's surveillance programs in conjunction with the Air Force Defense Command
have measured and determined the collisional cross-sections and collisional probabilities.
These data in turn show that the ISS will be "hit" with a certain flux (Figure G.15) and
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frequency over its lifetime. Some of the collisions with micron-sized particles can
necessarily result in the degradation of unshielded ISS components and equipment (e.g.,
solar arrays). Typical impact velocities are 8-14 km/sec for debris and as much as 19
km/sec for micro-meteroids. Risk mitigation is debris shields or "bumpers" placed in the
ram direction for debris and in the zenith direction for micro-meteroids. Calculation of
such shielding is supported by the JSC orbital debris program (with website (@ sn-
callisto) and the JSC Hypervelocity Impact Facility (HITF, with website @ hitf).
Because pressurized vessel penetration is a potential consequence, crew safety can be
jeopardized by a rupturing vessel. Any pressurized "tank" intended for the ISS must
therefore pass adequate safety reviews, and actually become "tank systems"” with the tank
enclosed in a debris shield box which prevents vessel rupture. An example would be the
gaseous tank supply system required for the baseline ACCESS TRD instrument.
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Figure G.15. Meteoroid and Orbital Debris flux

Relevant documentation is: SSP 30425, Sec. 8; Ref. 43.
Relevant websites include: Orbital Debris Lab and Hypervelocity Impact Facility.

Electromagnetic interference (EMI)

The STS and ISS electromagnetic environments are particularly relevant for
science payload function and operation. It is important that instrumentation and avionics
systems function without degradation due to interference from other payloads and
spacecraft activity, in the presence of a radio-frequency (RF) background emitted by the
Earth. One obvious source of such environmental conflict is the potential for
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electromagnetic interference or noise generated by other payloads or neighboring
equipment. Examples of EMI would include inadvertent radiation or emissions from
electrical power systems, switching devices, motors, and avionics circuitry. Other
examples are transmitters and receivers, cabling geometry, wiring configuration.
grounding schemes, and bonding methods. Consequences of EMI include fundamental
noise and interference, ground loops, cross-talk in cabling, sporadic behavior and
equipment upsets, static charge build-up, and sporadic sources of electromagnetic
radiation. Risk mitigation includes EMI safety review, emission and susceptibility limits
with margins, wiring and cabling separation, electromagnetic shielding, EMI testing,
adequate grounding, electromagnetic isolation, and appropriate bonding methods.
Electromagnetic compatibility (EMC) and the EMI control plan are the subject of
SSP57010, Appendix G. A general discussion of natural EMI sources is given in SSP
30425B, Figure 7.1.

Relevant documentation is: SSP 57010G, SSP 30237, SSP 30242, MIL-STD-
461, SSP 30243, SSP 30238, MIL-STD-1576, SSP 30240, and SSP 30245.

Contamination

Degradation of ISS payload performance through contamination of external
surfaces is another environmental concern. This is usually defined as molecular or
particulate deposits which, in combination with solar ultraviolet (UV) radiation, atomic
oxygen, and the ambient plasma, can alter the optical, thermal, and surface properties of
payload surfaces. Floating contamination could obstruct the field-of-view (FOV),
degrade visibility, and possibly compromise certain science payload objectives. Surface
contamination includes any molecular or particulate releases from the STS and ISS
during operations. An example was urea from flight crew urine dumps during proximity
operations for LDEF retrieval, discovered to be coating the entire payload during post-
flight analysis. Other potential contamination sources include outgassing. Some
consequences are change in thermal control performance, degradation of solar array
efficiency, obstruction of FOV, and instrument clogging. Risk mitigation includes pre-
launch contamination control, appropriate prox ops procedures regarding plume
impingement, venting, and dumps, and safety reviews.

Relevant documentation is: SSP 30426, ASTM-E595-84, JSC SC-C-0005C,
NSTS 07700-Vol. X1V, Appendix 1, MCR-86-2004.

Acoustics, Stress, and Vibration

The subject of acoustical interference, stress, and vibration is pertinent to all STS
and ISS mission phases in both the ground and space segments. Audible noise from
operating equipment and instrumentation is an issue of crew and personnel safety.
Acoustical noise transmitted by phonon propagation, resonance, and structural vibration
can result in degradation of payload performance, falling into the categories of EMI
discussed above. Stress and vibration are the subject of rigorous safety review and were
the basis of the ACCESS carrier analysis described in the body of this Report. All can
result in mission failure. Risk mitigation is a thorough safety review process.
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Relevant documentation is: SSP 50005, MIL-STD-5G, NSTS-14046, ISC 73642,
NSTS-1700.7B, SSP 50021.

161



Appendix H. Interface Hardware, Kits, and Incompatibilities

The hardware per se will be discussed in Appendix H.1, while functional
incompatibilities which impact power and data interfaces are presented in Appendix H.2.

H.1 Hardware per se

The following Table is a preliminary assessment of ISS interface hardware that
may be required for the ACCESS payload on ISS. All of the hardware should be
provided GFE to the payload at no cost. All deliverables are compatible with the 36-
month schedule template for launch.

NASA-ISS Interface Deliver HDWR Deliver
Provided Definition for prelim Flight
Hardware Provided IVTs (if req’d) HDWR

PAS/UMA “Kit” L-42 L-24 L-18
Grapple Fixtures L-36 L-20 L-14
ROEU L-34 L-18 L-13
Video Cameras, L-24 L-16 L-12
Targets

EVA Handrails, L-24 L-14 L-11
Tether Attach

PFR Attach Points L-24 L-14 L-11

Prototypes, qualification units, or special test equipment (STE) required for
mechanical fit-checks and electrical or data interface verification tests (IVTs) should also
be provided when required. This Table must be revised as the ISS and PAS interface
requirements are defined.

Passive PAS/UMA “Kit”

NASA-ISS will probably provide all flight hardware components for attached
payloads in a standard adaptable “kit” that would include the passive half of the PAS and
UMA. This would also include the EVA unloadable or removable capture bar
mechanism that is now required for all payloads since NASA-ISS eliminated the
redundant motors on the PAS capture latch assembly. If a standard passive PAS/TUMA
kit were provided, it might also eliminate the need for a ground adjustable capture bar
that would allow the proper preload to be imposed by the PAS capture latch. All the
other components listed above should be provided in the attached payload “kit.”

162



Grapple Fixtures

When the ACCESS USS Option was proposed’ in 1996 by the Accommodation
Study team, the original scenario was to remove it from the payload bay with the Shuttle
RMS (SRMS), pass it off to the Space Station RMS (SSRMS), and install it on the S3
upper inboard PAS site without translating the Mobile Transporter (MT). If there were
no problems, this would take a few hours and ACCESS would not need keep-alive
power. Originally, this was to be accomplished using at least two relatively inexpensive,
unpowered, Flight Releasable Grapple Fixtures (FRGFs) supplied by ISS and SSP. In
other words, this was a mechanical interface only.

However, since the PAS weight and CG envelopes have been considerably
reduced, a retractable keel trunnion assembly mechanism(s) will probably be required on
the USS option with EVA contingency operation. Otherwise, ACCESS must go with the
ECS.

Therefore, an ACCESS-with-USS-Option would require at least one Electrical
Flight Grapple Fixture (EFGF) to operate and control the retractable keel mechanism
from the SRMS after the payload is unberthed from the Shuttle. Once the keel is moved
to expose the passive PAS, a FRGF is still needed for the SSRMS to grab and install
ACCESS/USS on the PAS. If this operation were to take several hours or even days due
to equipment or logistical problems, ACCESS (ECS or USS) would need to be handed
back to the SRMS to get keep-alive power (via an EFGF) or get power from the SSRMS
(via a PDGF).

This would mean replacing the relatively cheap FRGF with an expensive
(=$700K) Power and Data Grapple Fixture (PDGF) because the EFGF 1s not currently
compatible with the SSRMS. The PDGF is an ISS Orbital Replacement Unit (ORU) that
could be removed from the ECS or USS via EVA and recycled while ACCESS is on ISS

if necessary.

If ACCESS were to need to be moved on the MT at some point, a third grapple
fixture (FRGF or PDGF?) may be needed somewhere else on the ECS or USS.

Remotely Operated Electrical Umbilical (ROEU)

NASA/ISS may consider performing a post-launch functional test of the ACCESS
experiment prior to unberthing from the payload bay of the Shuttle. This way, problems
that may lead to a return-to-Earth decision can be detected prior to installation on the ISS
truss. Also, if the rendezvous and docking with ISS takes longer than expected, or
problems with other payloads and logistics carriers delay ACCESS installation on the
PAS, ACCESS may require keep-alive power in the payload bay of the Shuttle to
stabilize the temperature of its TRD gas system.
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For any of these scenarios, NASA-ISS should provide one complete ROEU
payload half, compatible with the Space Shuttle half. Depending upon the ACCESS
payload interface design (Appendix H.2 below), an Assembly Power conversion Unit
(APCU) may also be required.

Video Cameras or Targets

NASA-ISS must provide any video cameras or targets if required for berthing the
ACCESS payload on the active half of the PAS. ACCESS would integrate the targets.

EVA Handrails and Tether Attach Points

NASA-ISS should provide any EVA handrails and tether attach points needed to
allow passage around areas that will be blocked by the ECS or USS on the S3 Truss
Segment PAS due to new EVA translation envelope requirements. These may also be
required because the reduced PAS weight and CG envelopes will cause the payload to be
located lower on the truss, thus causing an EVA translation corridor path blockage.

Portable Foot Restraint (PFR) Attach Points

NASA-ISS should provide any PFR attach points required on the ECS or USS to
provide coverage for areas of the S3 Truss Segment that may be blocked by the ECS or
USS. This is to maintain the capability to service ISS ORUs in the area.

Schedule

The Table is a preliminary estimate in L-months of the lead time needed to
incorporate the design, manufacturing, and installation of each of the hardware
components into the ACCESS payload.

Interface definition requirements (specifically IRD SSP 57003 and CR 1135
which modifies it) for the PAS and UMA, whether they are in a “kit” or not, will have the
greatest impact on the overall payload configuration. It is these requirements that will
define the position and orientation of the payload on the PAS as well as in the Space
Shuttle. There is a reasonable chance that the completely new ECS carrier structure will
be required in order to comply with CR 1135. This is why the interface definition needs
to be provided as early as possible. Other components, like video cameras, EVA
Handrails, and PFR attach points will have less impact and can be incorporated into the
design later.

Presently, 11 months lead time is required from submittal of a planning purchase
request (PR) to delivery of an FRGF. For an EFGF, 14 months lead time is needed and
20 months is needed for a PDGF and its cable harness. Since the flight hardware must be
ready for installation at L-14 months, these need to be ordered at L-25 to L-34 months.
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H.2 STS functional incompatibilities

As mentioned under “ACCESS Accommodation STS” in the main text of this

report, there are three distinguishing features about STS accommodations, summarized in
Table H.2-1.

Table H.2-1. STS-ISS Accommodation Incompatibilities.

« STS power is 28 VDC while ISS PAS power is 120 VDC.

« STS high rate data travels via copper wire while the ISS uses fiber optics.

« STS low rate data and command is via the PSP and PDI, while ISS uses 1553
data bus.

Figure H.2-1 functionally illustrates the STS power and data accommodation
interface. The ROEU provides the physical connection between the Shuttle cabin and its
payload bay for transferring power (28 VDC) and data (low rate 1553 data bus and high
rate copper wire). From Table H.2-1, additional hardware may be required depending
upon the functional STS requirements to support the ISS ACCESS payload and the
design of ACCESS itself. Table H.2-2 summarizes the STS accommodation situation.

STS Power and Data Accommodations

STS Payload Bay STS Crew Cabin

Experiment
L 1553 |DCU

Fiber »l
> ROEU
8Vde _ _____ ] i B v —{KuSP
< I—|_—]
DDR

ACCESS
"""" Power
APCU [T Off Hi Low

Rate Rate

JSC POCC

A

Figure H.2-1 STS accommodation interfaces.

Table H.2-2. Examples of STS Accommodation Requirements.

Regquirement Outfitting
« Provide power at 28 VDC. * ROEU
* Provide power at 120 VDC. * ROEU and APCU
* Provide low rate data via S-band. * ROEU and OIU
* Provide high rate data via Ku-band '« DCU and ROEU
» Provide all of the above. * DCU, ROEU, APCU, OIU
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Only the ROEU in Table H.2-2 is GFE. The others are costs incurred by the
payload.

If the STS payload bay accommodation requirement is only power in order to
activate the ACCESS heaters in its thermal control system for stabilizing the TRD gas
system (Appendix B.3, Figure B.3-5), only an ROEU is required. From Figure H.2-1, the
APCU, DCU, and OIU are not necessary if the payload heater system for the thermal
control can function using the STS 28 VDC power available in the ROEU interface.

If the ACCESS payload is designed to operate on both 28 VDC and 120 VDC
power (Figure 27 in the main text), the APCU in Figure H.2-1 and Table H.2-2 is
unnecessary. A redundant heater system or internal power conversion (28 VDC < 120
VDC) in Figure 27 can accomplish this.

If no live science data downlink functional test is required prior to unberthing the
ACCESS payload from the Shuttle bay, and the previous paragraph above is complied
with, then only the ROEU in Figure H.2-1 is required for STS power accommodations.

H.3. Functional PAS and UMA interfaces

{TBD)
A2
CAPTURE LATCH
ATB0) | P(TBOY
wea 1HmRrower, 20 [ ) TR IJ HEATER
A(TEO! PTBO) § XTED} X8O
ea 1 rower 2000 [ ) ! — WD) {
IMCA 1
At
1553 DATA - A, 22-85) YT WTEDY
ADDRESS. 212) v j 4 ATAD)
. p i T
LRy = ]
Al
UMA
IMCA 1 HTR POWER, 2020 { veaten
P(TBD)

xTeoj
Pusnwmu.us)[D PASSTHA POWER
ATBD)
1563 DATA - B. 2-88)
MCA 1 ATD, 22-20 f_ﬂ;ln_m,

Figure H.3-1. PAS interface block diagram.
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Appendix I. PCU Tank System, details
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Acronvm

ACCESS
AC

ACE
ACLB
A/D
ADC

AESMAX(MIN)

AGU
AID
Al
AMS
AP

APSMAX(MIN)

APCU
APFR
APL
APLSS
APM
APS

Ar

As

ASIC
Assy, ASSY
ATC
ATP
ATIC
Avionics
Avionics
B

Be

BGO
B/L
BLKT
BOL

Br

C

CAL
Caltech
CAM
cap
C&C MDM
C&D
C&DH
CCF
CCSDS
CDR
CETA
CEU
Cert

Appendix J. Acronyms and definitions

Meaning

Advanced Cosmic-Ray Composition Experiment for Space Station

Assembly Complete

Advanced Composition Explorer
ASIC Control Logic Board
Analog-to-digital

Analog-to-digital converter

Trapped electron flux computer code
American Geophysical Union
Accommodation interface device
Aluminum

Alpha Magnetic Spectrometer
Attached Payload

Trapped proton flux computer code
Assembly Power Converter Unit
Avionics Planning Flight Review
Approved Parts List

Attached payload support structure
Attached Pressurized Module
Automated Payload Switch

Argon

Arsenic

Application Specific Integrated Circuit
Assembly

Aerogel Threshold Counter
Acceptance Test Plan

Advanced Thin Ionization Calorimeter
Aviation electronics

Aerospace electronics

Boron

Beryllium

Bismuth Germanate (Bi,Ge,0,, - chemical formula)
Baseline

Blanket

Beginning of life

Bromine

Carbon

Calorimeter

California Institute of Technology
Centrifuge Accommodations Module
Capacitor

Command and Control MDM
Command and data

Command and data handling
Consolidated Communications Facilities
Consultative Committee for Space Data Systems
Comprehensive design review

Crew and Equipment Translation Aid
Control electronics unit

Certification
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c.f. confer, compare

CG Center of gravity

CIR Cargo Integration Review

CIT California Institute of Technology

CITE Cargo Integration Test Equipment

CLA Capture Latch Assembly

cm centimeter

cm”2 cm’

CMD Command

CMG Control Moment Gyro

CMOS Complementary metal oxide semiconductor
CNO Carbon, nitrogen, oxygen element group
CoFR Certification of Flight Readiness
CONTAM Contamination

COR Communications Outage Recorder

COTS Commercial-off-the-shelf

CPDS Charged Particle Differential Spectrometer
CPU Central processing unit

CR Change Request

CREME Cosmic Ray Effects on Micro-Electronics (computer code)
CRF Canister Rotation Facility

CRN Cosmic-Ray Nuclei (Experiment, Spacelab-2)
CRV Crew Return (Rescue) Vehicle

Cs Cesium

CSR Customer Support Room

DC Direct current (power)

DC Docking Compartment

DC&I Design, Certification, & Integration

DCU Data Conversion Unit

DDCU DC-to-DC converter unit

DDR Digital data recorder

DDT&C Design, Development, Test, and Certification
DDT&E Design, Development, Test, and Evaluation
DESY Deutsche Electonishen Synchrotron

DIM Digital interface module

DNY Downey

DOE U.S. Department of Energy

DSM Docking and Stowage Module

E Energy

E-net Ethernet

ECLSS Environmental Control and Life Support System
ECS Experiment Carrier Structure

EDAC Error detection and correction

EDO Extended Duration Orbiter

EEE Electrical and electronic equipment

EF Exposure Facility

EFGF Electrical Flight Releasable Grapple Fixture
Eg.,eg. For example

EGSE Electrical Ground Support Equipment

ELM Experiment Logistics Module

EMC Electromagnetic compatibility

EMCS Enhanced Mission Communications System
EMI Electromagnetic interference
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EMICP
EMU
ENG
EOL
EPI
ERA
ERRIC
ESA
ESTL
etc.
ETE
EUV
EVR
EVA
EVAL
EWB
EXP

F

Fab
FAR
FAR
FAWG
FDRD
Fe
FEM
FEM
FEMA
FGB
FIP

Fit, FLT
FLUKA
FOR
FORTRAN
FOV
FPGA
FPSR
FRGF
FRR
FSE
FUNCT
g

G

GC
GEANT
GFE
GHE
GN&C
GOAL
GOWG
GPC
GPS
GRAM
GRND
GSE

EMI control plan

Extravehicular Mobility Unit
Engineering

End of life

Epitaxial

European Robotic Arm

Electronics Radiation Response Information Center
European Space Agency

Electronic Systems Test Laboratory

Et cetera

End-to-end

Extreme ultraviolet

Extravehicular Robotics

Extravehicular Activity

Evaluation

Environmental Workbench

Experiment

Fluorine

Fabrication

Flight Acceptance Review

Federal Acquisition Register

Flight Assignment Working Group

Flight Definition Requirements Document
Iron

Finite Element Model

Front-end Module

Failure Modes and Effects Analysis
Functional Cargo Block (Russian control module, Zarya)
First lonization Potential

Flight

Fluctuating Cascade (German) computer code
Flight Operations Review

Formula translator

Field of View

Field Programmable Gate Array

Flight Planning and Stowage Review
Flight Releasable Grapple Fixture

Flight Readiness Review

Flight Support Equipment

Functional

gram

Giga-

Generally clean

Giant (French), simulation computer code
Government furnished equipment
Ground Handling Equipment

Guidance, navigation, and control
Galactic Origin and Acceleration Limit
Ground Operations Working Group
General Purpose Computer (Shuttle)
Global Positioning Satellite

Global Reference Atmosphere Model (MSFC)
Ground

Ground Support Equipment
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GSFC
H

Hab
HCOR
He
HEAO
HEXTE
HITF
HMP
HODO
HORIZ
HOSC
HQ
HSKP
HST
HTR
HV
HVI

I

ICD
ICRC
iD
IDD
1IEEE
I’F

IF
IGRF
IMCA
In
INST'LN
INTG
IR
IRD
IRI
ISPR
ISS
ITA
ITA-S
ITA-P
ITS
IVT
IV&T
JACEE
JAM
JCP
JEM
JEM
JGR
JIS
JPL
JSC
kbps
KSC
KuSP

Goddard Space Flight Center
Hydrogen

Habitation

Operational version of COR

Helium

High-Energy Astrophysics Observatory
High-energy X-Ray Telescope Experiment
Hypervelocity Impact Facility
Hazard mitigation plan

Hodoscope

Horizontal

Huntsville Operations Support Center
Headquarters

Housekeeping

Hubble Space Telescope

Heater

High voltage

Hypervelocity Impact

Inboard

Interface Control Document
International Cosmic Ray Conference
Identification

Interface Definition Document
Institute for Electrical and Electronic Engineers
Interface

Interaction factor

International Geomagnetic Reference Field
Integrated Motor Control Assembly
Indium

Installation

Integration

Infrared

Interface Requirements Document
International Reference lonosphere
International Standard Payload Rack
International Space Station
Integrated Truss Assembly
ITA-Starboard

ITA-Port

Integrated Truss Segment

Interface Verification Test
Integration, Verification, and Test
Japanese-American Cooperative Emulsion Experiment
Joint Airlock Module

Japanese Control Program

Japanese Equipment Module
Japanese Experiment Module

Journal of Geophysical Research
Joint Integrated Simulation

Jet Propulsion Laboratory

Johnson Space Center

kilobits per second

Kennedy Space Center

Ku-band Signal Processor
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L-34
L-months
LBNL
LDEF
LED
LEO
LEPS
LET
LM, L-M
LMES
LPIS
LRR
LSFR
LSM
LSP
LSRR

M

m

MAG
MAPMT
MARIE
Mbps
MBS
MCC
MCC
MDF
MDM
MECH
MECH INT & PROC
MET
Mfg, MFG
mg

Mg

Mil
MIL-STD
Mip

MIP
Mips
Mission-00
MLI

mm
MMC
MMOD
MMPF
MMPTD
MPLM
MPPF
MRS
MSB
MSC
MSFC
MSIS
MSU
mV

Launch minus 34 months (or weeks)

Time prior to launch, in months

Lawrence Berkley National Laboratory
Long-Duration Exposure Facility
Light-emitting diode

Low Earth orbit

Low-energy particle shield

Linear Energy Transfer (Ref. 39, MeV-cm*/mg)
Lockheed Martin

Lockheed Martin Engineering and Sciences
Launch Processing Integration Stand
Launch Readiness Review

Launch Site Final Review

Life Support Module

Launch Site Processing

Launch Site Readiness Review

Mega-

meter

Magnet

Multi-anode PMT

MArtian Radiation Environment Experiment
Megabits per second

MRS Base System

Mission Control Center

Master Control Computer

Minimum duration flight
Multiplexer-Demultiplexer

Mechanical

Mechanical Integration and Processing
Marshall Engineering Thermosphere model
Manufacturer

milligram

Magnesium

102 inch

Military Standard

Minimum ionizing particle

Mission Integration Plan

Mip in Silicon

Shuttle/ISS Mission, TBD

Multi-layer insulation

millimeter

(APM) Mission Management Computer
Micro-Meteroid and Orbital Debris
Micro-Gravity and Materials Processing Facility

Manufacturing Materials and Processing Technical Division

Multi-Purpose Logistics Module
Multi-Payload Processing Facility

Mobile Remote Servicer

Multi-Sideband

Mobile Servicing Center

Marshall Space Flight Center

Mass Spectrometer Incoherent Scatter model
Mass storage unit

millivolt
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MT
MTBF
MTG, Mtg
Mux
MWPC
n
NASA
NASDA
NASTRAN
NATO
Ne

Ni
NISN
NRA
NRL
NSSDC
NSTS
NTA
NTA

¢

¢ 11

O

0
Off-line
OIU
OMRS
On-line
OPF
OPS, Ops
OR
ORU
OSE
OTD
ov

P

P3

P/L
PAH
PAIT
PALS
parsec
PAS

Pb

PC

PCS
PCU
PDGF
PDI
PDL
PDLU
PDM
PDR
PDSS
PETS

Mobile Transporter

Mean-time between failures

Meeting

Multiplexer

Multi-wire proportional counter/chamber
index of refraction

National Aeronautics and Space Administration
National Space Development Agency of Japan
NASA structural analysis computer program (cf. FORTRAN)
North Atlantic Treaty Organization

Neon

Nickle

NASA Information Services Network

NASA Research Announcement

Naval Research Laboratory

National Space Science Data Center

National Space Transportation System
Network test adapter

Nitrogen tank assembly

Phase (see Phase below)

Phase “Two” safety review

Oxygen (atomic)

Oxygen (molecular)

Payload at KSC but not turned over to NASA
Orbiter Interface Unit

Operations and Maintenance Requirements and Specifications
Payload at KSC and tumed over to NASA
Orbiter Processing Facility

Operations (flight crew in conjunction with flight controllers)
Logic summing gate (electronics)

Orbital Replacement Unit '

orbital support equipment

ORU Transfer Device

Orbiter Vehicle

Proton

Port 3

Payload

Payload Accommodations Handbook
Payload Accommodations Integration Team
Program Automated Library System

3.258 light years

Payload Attach System

Lead

Personal computer

Portable computer system

Power Conversion Unit

Power and Data Grapple Fixture

Payload Data Interleaver

Payload Data Library

Payload data interleaver unit

Payload data multiplexer

Preliminary design review

Payload Data Services System

Payload Environmental Transfer System
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PFR
PGSC
Phase
PIA
PIP

PL
PLBD
PLCU
PLID
PLYD
PM
PMA
PMT
PNP
POCC
POIC
PPL
PR
PREP(s)
PRIM
PROG MGR
PROM
Prox Ops
PSP
PSV
Pt
PUP
PV
PVLR
Pwr
PLYD
Ql
Qual
R&D
RACU
Rad-hard
RAM
Rb
req’d
RF

RI

RM
RMS
ROEU
RSA
RY

S3

SAA
SAAMD
Sc

Scar
SCHED

Portable foot restraint

Payload General Support Computer
Designated by “¢” (safety-review phase designation)
Program Initiation Agreement
Payload Integration Plan

Payload

Payload Bay Doors

Payload control unit

Payload interface device

Payload

Propulsion Module

Pressurized Mating Adapter
Photo-multiplier tube

Probability of no penetration
Payload Operations Control Center
Payload Operations Integration Center
Preferred parts list

Purchase request

Preparation(s)

Primary

Program Manager

Programmable Read-Only Memory
Proximity operations (on-orbit)
Payload Signal Processor

Pressure safety valve

Platinum

Partner Utilization Plan
Photovoltaic

Pre-VLR

Power

Payload

First Quarter, etc.

Qualification

Research and development
Russian-American Converter Unit
Radiation hardened

Random access memory

Rubidium

required

Radio-frequency

Rockwell International

Research Module

Remote Manipulator System
Remotely operable electrical umbilical
Russian Space Agency

Real-year (dollars)

second

Sulfur

Starboard 3 (etc.)

South Atlantic Anomaly
Stand-Alone Acceleration Measurement Device
Scandium ‘
Placeholder interface

Schedule
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SEE Stand End Effector

SEE Single event effects

SEP Solar Event Particle

SEU Single-event upset

SEU Structure and Evolution of the Universe
SLF Shuttle Landing Facility

Si Silicon

Sim Simulation

SFWR Software

SLP Spacelab Pallet

SM Service Module (Russian)

S/MM-09 Shuttle-Mir Mission No. 9

SN Supernova

SOl Silicon-on-Sapphire Insulator

SNR Supernova remnant

SPDM Special Purpose Dexterous Manipulator
SPIE The International Society for Optical Engineering
SPIP Station Program Implementation Plan

SPP Science Power Platform

SSPF Space Shuttle Processing Facility

Sr Steradian

SRAG Space Radiation Analysis Group

SRMS Shuttle Remote Manipulator System

STA Structural Test Article

SS Space Station

SSCC Space Station Control Center

SSP Space Station Program

SSPF Space Station Processing Facility

SSPO Space Station Program Office

SSRMS Space Station Remote Manipulator System
STE Special Test Equipment

STS Space Transportation System (Space Shuttle)
STS-00 STS flight, TBD

STS-TBD STS flight, TBD

SWH Spares Warehouse

S-Wire Safety wire

T Tera-

TAP Truss Attached Payloads

TBD To-be-determined

TCP/IP Transfer Command Protocol/Internet Protocol
TCP/IP Transmission Command Protocol/Internet Protocol
TCS Thermal Control System

TDRS Tracking Data Relay Satellite

TeV Tera-electron-volt

Th Thorium

TIGER Trans-Iron Galactic Element Recorder
TIM Technical Interchange Meeting

TOF Time-of-flight

™ Telemetry

™ Task/technical manager

TMA Technical Management Area

TPEC Tissue-Equivalent Proportional Counter
TRACER Transition Radiation Array for Composition of Energetic Radiation
TRIG Trigger
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TRD Transition Radiation Detector

TRR Test Readiness Review

Turnkey Utilization of existing JSC DC&I methodology, personnel, & templates
TV Test and Verification

U Uranium

U Upper

UCC Unpressurized Cargo Carrier
UCCAS UCC Attach System

UDM Universal Docking Module

UF Utilization (Utility) Flight

UH Ultra-Heavy

Ul Upper inboard

ULC Unpressurized Logistics Carrier
ULCAS ULC Attach System

UMA Umbilical Mechanism Assembly
uo Upper outboard

UOF User Operations Facility

URL Uniform Resource Locator

U.S. United States of America

USOC United States Operations Center
UsSos United States On-Orbit Segment
uv Ultraviolet

UVT Ultra-Violet Transmitting

\Y Vanadium

\% Volt

VAB Vehicle Assembly Building

VAR Verification Analysis Review

vDC Volts direct current

VES Vacuum Exhaust System

VIiB Vibration

VLA Verification Loads Analysis

VLR Verification Loads Review

VLSI Very Large-Scale Integration

w Watts

WBS Work Breakdown Structure

WETF Weightless Environment Training Facility
WG Working Group

WSC White Sands Complex

Wt Weight

WBSAAMD Wide-Band Stand-Alone Acceleration Measurement Device
WYE Work-year equivalent

Xe Xenon

Z Electric charge of the nucleus (atomic number)
Z1 Zenith 1

ZIM "Z" (Charge) Identification Module
Zn Zinc

& and (ampersand)

1-G One Earth-gravity (9.80665 m s)
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Appendix K. Websites and Internet Access

Various ACCESS-related Websites:

#Goddard http://www701.gsfc.nasa.gov/access/access.htm
#Johnson Space Center http://www-sn.jsc.nasa.gov/jas/jas.html
#Office of Space Science, Headquarters http://www.hq.nasa.gov/office/oss/

e University of Maryland http://www.atic.umd.edu/access.htm]
#University of Chicago http://hep.uchicago.edu/~swordy/access.html
#Louisiana State University http://phacts.phys.Isu.edu/access

¢ Washington University, St. Louis http://cosray2.wustl.edu/access

Various Space Station-related Websites:

¢PALS http://iss-www.jsc.nasa.gov/cgi-bin/dsql+/ORAP?-h+pl_search
#SSP Released documents http://iss-www.jsc.nasa.gov/ss/issapt/payofc/documents/ozdocs.html
#I1SS Program Team http://iss-www.jsc.nasa.gov/ss/issapt/

¢Image of ISS http://station.nasa.gov/gallery/animstills/fin22.jpg

#Boeing, Radiation Effects Lab http://www.boeing.com/assocproducts/radiationlab/data.htm

#JSC Approved Parts List

®GSFC Preferred Parts List

#Orbital Debris Lab http://sn-callisto jsc.nasa.gov/model/ordem96.htm!

®Hypervelocity Impact Facility http://hitf jsc.nasa.gov/hitfpub/main/index.html

#1SS Assembly Sequence http://iss—www.jsc.nasa.gov/ss/issapr/mio/mioissably.htm

Office of Space Science (OSS) Images, Website:

#0SS images http://www.hq.nasa.gov/office/oss/images.html
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ACCESS Study Participants

(in alphabetical order)

Institutions
#NASA Goddard Space Flight Center
#NASA Headquarters
#NASA Jet Propulsion Laboratory
#NASA Johnson Space Center
#NASA Marshall Space Flight Center
oCalifornia Institute of Technology
el ouisiana State University
e#Naval Research Laboratory
#New Mexico State University
ePennsylvania State University
e Texas Tech University
eUniversity of Alabama
eUniversity of Chicago
#University of Maryland
eUniversity of Michigan
+Washington University in St. Louis
eInstitute for Theoretical and

Experimental Physics, Moscow
eltalian National Institute of

Nuclear Physics (INFN)
+Kanagawa University, Japan
#Seoul National University, Korea
eUniversity of Siegen, Germany

ACCESS Project Principals:

eProgram Scientist: W. Vernon Jones

#Project Formulation Manager:
Elizabeth A. Park

eProject Study Scientist:
Robert E. Streitmatter

#JSC Accommodation Study Scientist:
Thomas L. Wilson

L SU Baseline Principal Investigator:
John P. Wefel

ACCESS Baseline Principal
Investigators

#W. Robert Binns, Charge module
eDietrich Miiller, TRD
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eJohn P. Wefel, BGO calorimeter

Cal Tech
oRichard A. Mewaldt
oMark E. Wiedenbeck

Louisiana State University
¢Gary Case

eMichael L. Cherry

oT. Gregory Guzik
eJoachim Isbert

eJohn P. Wefel

Naval Research Laboratory
eJames H. Adams
oRichard A. Kroeger

University of Chicago
eWayne C. Johnson
eDietrich Miiller
eSimon P. Swordy

University of Maryland
oEun-Suk Seo

University of Michigan
+Gregory Tarle

Washington University, St. Louis

o W. Robert Binns
eJohn Epstein
oPaul L. Hink
eMartin H. Israel

JSC Legal Office, Code AL
eJoyce R. Simmons

JSC Earth Science and Solar System
Exploration Division, Code SN3

¢Gautam Badhwar



#Douglas P. Blanchard
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Authentication of Costs and Schedules

The estimated costs presented in this report for the accommodation of ACCESS as an ISS
payload represent values arrived at by Lockheed-Martin as the support contractor for our
Science Payloads Management Division, Code SM, at the Johnson Space Center in
Houston, Texas. This payload accommodation study activity has been funded through
the Office of Space Science as NRA 96-0SS-03 (New Mission Concepts in Space
Science), under which it was agreed to determine an estimate of the end-to-end costs for
the Mission Management Office (MMO) function here at JSC as a part of this ACCESS
Accommodation Study report. The assumptions involved in both the costs and the
schedules for the MMO function are given in the text of this report. They basically treat
ACCESS as a follow-on payload for the STS and ISS programs in the same fashion as we
are currently handling the Atpha Magnetic Spectrometer (AMS).

Both the costs and the schedules are acceptable, being valid estimates derived from JSC
actuals for AMS.
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